On the Maximum Entropy Negation of a Probability Distribution

被引:73
作者
Yager, Ronald R. [1 ]
机构
[1] Iona Coll, Inst Machine Intelligence, New Rochelle, NY 10805 USA
关键词
Aggregation; decision-making; membership grade; nonstandard fuzzy set;
D O I
10.1109/TFUZZ.2014.2374211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We suggest a transformation to obtain the negation of a probability distribution. We investigate the properties of this negation. Using the Dempster-Shafer theory of evidence, we show of all the possible negations our proposed negation is one having a maximal type entropy.
引用
收藏
页码:1899 / 1902
页数:4
相关论文
共 14 条
[1]  
Aczel J., 1975, On measures of information and their characterizations
[2]  
[Anonymous], 1986, INT J INTELL SYST
[3]  
[Anonymous], 13 C INF FUS ED UK
[4]  
[Anonymous], 1964, INT BUSINESS
[5]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&
[6]  
Heyting Arend., 1956, Intuitionism: An introduction, V3rd edn.
[7]  
Liu LP, 2008, STUD FUZZ SOFT COMP, V219, P1, DOI 10.1007/978-3-540-44792-4
[8]  
Pedrycz W, 2007, FUZZY SYSTEMS ENGINEERING: TOWARD HUMAN-CENTRIC COMPUTING, P1, DOI 10.1002/9780470168967
[9]  
Shafer G., 1976, MATH THEORY EVIDENCE, V42, DOI DOI 10.1080/00401706.1978.10489628
[10]   Decision making in the TBM: the necessity of the pignistic transformation [J].
Smets, P .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2005, 38 (02) :133-147