Oscillation criteria for a nonlinear hyperbolic equation boundary value problem

被引:8
作者
Wang, PG [1 ]
Yu, YH
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Peoples R China
[2] Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
oscillation; hyperbolic equation; distributed deviating arguments;
D O I
10.1016/S0893-9659(99)00107-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of delay hyperbolic equations boundary value problems, and obtain sufficient conditions for the oscillation of solutions of the equation (E) with two kinds of boundary conditions. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 50 条
[41]   Oscillation criteria for second order nonlinear differential equation with damping [J].
Luo, H ;
Zhuang, RK ;
Guo, XM .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (04) :441-448
[42]   OSCILLATION'S THEOREM FOR ONE BOUNDARY VALUE PROBLEM [J].
Sahakyan, G. G. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05) :2351-2356
[43]   Oscillation criteria for second order nonlinear differential equation with damping [J].
Luo Hui ;
Zhuang Rong-kun ;
Guo Xing-ming .
Applied Mathematics and Mechanics, 2005, 26 (4) :441-448
[44]   Keldysh type problem for B-hyperbolic equation with integral boundary value condition of the first kind [J].
Zaitseva N.V. .
Lobachevskii Journal of Mathematics, 2017, 38 (1) :162-169
[45]   Boundary-Value Problem for a Loaded Hyperbolic-Parabolic Equation with Degeneracy of Order in the Hyperbolicity Domain [J].
Khubiev K.U. .
Journal of Mathematical Sciences, 2020, 250 (5) :830-834
[46]   Initial-Boundary Value Problem for Hyperbolic Equation with Singular Coefficient and Integral Condition of Second Kind [J].
Sabitov K.B. ;
Zaitseva N.V. .
Lobachevskii Journal of Mathematics, 2018, 39 (9) :1419-1427
[47]   Linear periodic boundary-value problem for a second-order hyperbolic equation. I [J].
N. G. Khoma .
Ukrainian Mathematical Journal, 1998, 50 (11) :1755-1764
[48]   Boundary value problems for a nonstrictly hyperbolic equation of the third order [J].
Korzyuk, V. I. ;
Mandrik, A. A. .
DIFFERENTIAL EQUATIONS, 2016, 52 (02) :210-219
[49]   Boundary value problems for a nonstrictly hyperbolic equation of the third order [J].
V. I. Korzyuk ;
A. A. Mandrik .
Differential Equations, 2016, 52 :210-219
[50]   Oscillation Criteria for Impulsive Hyperbolic Equations of Neutral Type [J].
ZHU Xian-yang ;
Department of Mathematics .
数学季刊, 2006, (02) :176-184