Moving towards reproducible machine learning

被引:10
作者
不详
机构
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 10期
关键词
D O I
10.1038/s43588-021-00152-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide some recommendations on how to report machine learning-based research in order to improve transparency and reproducibility.
引用
收藏
页码:629 / 630
页数:2
相关论文
共 10 条
  • [1] Best practices in machine learning for chemistry comment
    Artrith, Nongnuch
    Butler, Keith T.
    Coudert, Francois-Xavier
    Han, Seungwu
    Isayev, Olexandr
    Jain, Anubhav
    Walsh, Aron
    [J]. NATURE CHEMISTRY, 2021, 13 (06) : 505 - 508
  • [2] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [3] Reproducibility standards for machine learning in the life sciences
    Heil, Benjamin J.
    Hoffman, Michael M.
    Markowetz, Florian
    Lee, Su-In
    Greene, Casey S.
    Hicks, Stephanie C.
    [J]. NATURE METHODS, 2021, 18 (10) : 1132 - 1135
  • [4] Deep-neural-network solution of the electronic Schrodinger equation
    Hermann, Jan
    Schaetzle, Zeno
    Noe, Frank
    [J]. NATURE CHEMISTRY, 2020, 12 (10) : 891 - +
  • [5] Hutson M, 2018, SCIENCE, V359, P725, DOI 10.1126/science.359.6377.725
  • [6] Highly accurate protein structure prediction with AlphaFold
    Jumper, John
    Evans, Richard
    Pritzel, Alexander
    Green, Tim
    Figurnov, Michael
    Ronneberger, Olaf
    Tunyasuvunakool, Kathryn
    Bates, Russ
    Zidek, Augustin
    Potapenko, Anna
    Bridgland, Alex
    Meyer, Clemens
    Kohl, Simon A. A.
    Ballard, Andrew J.
    Cowie, Andrew
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Jain, Rishub
    Adler, Jonas
    Back, Trevor
    Petersen, Stig
    Reiman, David
    Clancy, Ellen
    Zielinski, Michal
    Steinegger, Martin
    Pacholska, Michalina
    Berghammer, Tamas
    Bodenstein, Sebastian
    Silver, David
    Vinyals, Oriol
    Senior, Andrew W.
    Kavukcuoglu, Koray
    Kohli, Pushmeet
    Hassabis, Demis
    [J]. NATURE, 2021, 596 (7873) : 583 - +
  • [7] Improving the quality of machine learning in health applications and clinical research
    Mateen, Bilal A.
    Liley, James
    Denniston, Alastair K.
    Holmes, Chris C.
    Vollmer, Sebastian J.
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 554 - 556
  • [8] Norgeot B, 2021, NAT MACH INTELL, V3, P367
  • [9] Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist
    Norgeot, Beau
    Quer, Giorgio
    Beaulieu-Jones, Brett K.
    Torkamani, Ali
    Dias, Raquel
    Gianfrancesco, Milena
    Arnaout, Rima
    Kohane, Isaac S.
    Saria, Suchi
    Topol, Eric
    Obermeyer, Ziad
    Yu, Bin
    Butte, Atul J.
    [J]. NATURE MEDICINE, 2020, 26 (09) : 1320 - 1324
  • [10] Data-driven prediction of battery cycle life before capacity degradation
    Severson, Kristen A.
    Attia, Peter M.
    Jin, Norman
    Perkins, Nicholas
    Jiang, Benben
    Yang, Zi
    Chen, Michael H.
    Aykol, Muratahan
    Herring, Patrick K.
    Fraggedakis, Dimitrios
    Bazan, Martin Z.
    Harris, Stephen J.
    Chueh, William C.
    Braatz, Richard D.
    [J]. NATURE ENERGY, 2019, 4 (05) : 383 - 391