Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles

被引:17
作者
Aibar, Sara [1 ]
Fontanillo, Celia [1 ,3 ]
Droste, Conrad [1 ]
Roson-Burgo, Beatriz [1 ]
Campos-Laborie, Francisco J. [1 ]
Hernandez-Rivas, Jesus M. [2 ]
Rivas, Javier De Las [1 ]
机构
[1] USAL, CSIC, IMBCC,IBSAL, Canc Res Ctr, Salamanca 37007, Spain
[2] USAL, Hosp Univ Salamanca, HUS,IBSAL, Dept Hematol, Salamanca 37007, Spain
[3] CITRE, Seville 41092, Spain
关键词
DOWN-REGULATION; CLASSIFICATION; PACKAGE; MEIS1;
D O I
10.1186/1471-2164-16-S5-S3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Despite the large increase of transcriptomic studies that look for gene signatures on diseases, there is still a need for integrative approaches that obtain separation of multiple pathological states providing robust selection of gene markers for each disease subtype and information about the possible links or relations between those genes. Results: We present a network-oriented and data-driven bioinformatic approach that searches for association of genes and diseases based on the analysis of genome-wide expression data derived from microarrays or RNA-Seq studies. The approach aims to (i) identify gene sets associated to different pathological states analysed together; (ii) identify a minimum subset within these genes that unequivocally differentiates and classifies the compared disease subtypes; (iii) provide a measurement of the discriminant power of these genes and (iv) identify links between the genes that characterise each of the disease subtypes. This bioinformatic approach is implemented in an R package, named geNetClassifier, available as an open access tool in Bioconductor. To illustrate the performance of the tool, we applied it to two independent datasets: 250 samples from patients with four major leukemia subtypes analysed using expression arrays; another leukemia dataset analysed with RNA-Seq that includes a subtype also present in the previous set. The results show the selection of key deregulated genes recently reported in the literature and assigned to the leukemia subtypes studied. We also show, using these independent datasets, the selection of similar genes in a network built for the same disease subtype. Conclusions: The construction of gene networks related to specific disease subtypes that include parameters such as gene-to-gene association, gene disease specificity and gene discriminant power can be very useful to draw gene-disease maps and to unravel the molecular features that characterize specific pathological states. The application of the bioinformatic tool here presented shows a neat way to achieve such molecular characterization of the diseases using genome-wide expression data.
引用
收藏
页数:10
相关论文
共 30 条
[11]   Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia [J].
Grubach, Lykke ;
Juhl-Christensen, Caroline ;
Rethmeier, Anita ;
Olesen, Lene Hyldahl ;
Aggerholm, Anni ;
Hokland, Peter ;
Ostergaard, Mette .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2008, 81 (02) :112-122
[12]   Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report From the International Microarray Innovations in Leukemia Study Group [J].
Haferlach, Torsten ;
Kohlmann, Alexander ;
Wieczorek, Lothar ;
Basso, Giuseppe ;
Kronnie, Geertruy Te ;
Bene, Marie-Christine ;
De Vos, John ;
Hernandez, Jesus M. ;
Hofmann, Wolf-Karsten ;
Mills, Ken I. ;
Gilkes, Amanda ;
Chiaretti, Sabina ;
Shurtleff, Sheila A. ;
Kipps, Thomas J. ;
Rassenti, Laura Z. ;
Yeoh, Allen E. ;
Papenhausen, Peter R. ;
Liu, Wei-min ;
Williams, P. Mickey ;
Foa, Robin .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (15) :2529-2537
[13]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[14]   On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles [J].
Kendziorski, CM ;
Newton, MA ;
Lan, H ;
Gould, MN .
STATISTICS IN MEDICINE, 2003, 22 (24) :3899-3914
[15]   Wrappers for feature subset selection [J].
Kohavi, R ;
John, GH .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :273-324
[16]   Machine learning in bioinformatics [J].
Larranaga, Pedro ;
Calvo, Borja ;
Santana, Roberto ;
Bielza, Concha ;
Galdiano, Josu ;
Inza, Inaki ;
Lozano, Jose A. ;
Armananzas, Ruben ;
Santafe, Guzman ;
Perez, Aritz ;
Robles, Victor .
BRIEFINGS IN BIOINFORMATICS, 2006, 7 (01) :86-112
[17]   Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia [J].
Ley, Timothy J. ;
Miller, Christopher ;
Ding, Li ;
Raphael, Benjamin J. ;
Mungall, Andrew J. ;
Robertson, A. Gordon ;
Hoadley, Katherine ;
Triche, Timothy J., Jr. ;
Laird, Peter W. ;
Baty, Jack D. ;
Fulton, Lucinda L. ;
Fulton, Robert ;
Heath, Sharon E. ;
Kalicki-Veizer, Joelle ;
Kandoth, Cyriac ;
Klco, Jeffery M. ;
Koboldt, Daniel C. ;
Kanchi, Krishna-Latha ;
Kulkarni, Shashikant ;
Lamprecht, Tamara L. ;
Larson, David E. ;
Lin, Ling ;
Lu, Charles ;
McLellan, Michael D. ;
McMichael, Joshua F. ;
Payton, Jacqueline ;
Schmidt, Heather ;
Spencer, David H. ;
Tomasson, Michael H. ;
Wallis, John W. ;
Wartman, Lukas D. ;
Watson, Mark A. ;
Welch, John ;
Wendl, Michael C. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron ;
Chiu, Readman ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung ;
Corbett, Richard ;
Dhalla, Noreen ;
Guin, Ranabir ;
He, An ;
Hirst, Carrie ;
Hirst, Martin ;
Holt, Robert A. ;
Jones, Steven .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (22) :2059-2074
[18]   HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells [J].
Mani, Katrin ;
Sandgren, Staffan ;
Lilja, Johanna ;
Cheng, Fang ;
Svensson, Katrin ;
Persson, Lo ;
Belting, Mattias .
MOLECULAR CANCER THERAPEUTICS, 2007, 6 (02) :782-788
[19]  
Meyer D., SUPPORT VECTOR MACHI
[20]   minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information [J].
Meyer, Patrick E. ;
Lafitte, Frederic ;
Bontempi, Gianluca .
BMC BIOINFORMATICS, 2008, 9 (1)