Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration

被引:1182
作者
Moons, Karel G. M. [1 ]
Altman, Douglas G. [2 ]
Reitsma, Johannes B.
Ioannidis, John P. A. [3 ]
Macaskill, Petra [4 ]
Steyerberg, Ewout W. [5 ]
Vickers, Andrew J. [6 ]
Ransohoff, David F. [7 ]
Collins, Gary S. [2 ]
机构
[1] UMC Utrecht, Ctr Hlth Sci & Primary Care, NL-3508 GA Utrecht, Netherlands
[2] Univ Oxford, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Botnar Res Ctr, Oxford OX3 7LD, England
[3] Stanford Univ, Sch Med, Stanford Prevent Res Ctr, Stanford, CA 94305 USA
[4] Univ Sydney, Sydney Med Sch, Sch Publ Hlth, STEP, Sydney, NSW 2006, Australia
[5] Erasmus MC Univ Med Ctr Rotterdam, Dept Publ Hlth, NL-3000 CA Rotterdam, Netherlands
[6] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[7] Univ N Carolina, Dept Med & Epidemiol, Chapel Hill, NC 27599 USA
基金
英国医学研究理事会;
关键词
CARDIOVASCULAR RISK PREDICTION; EMERGENCY-DEPARTMENT PATIENTS; CHRONIC KIDNEY-DISEASE; CORONARY-ARTERY-DISEASE; CLINICAL DECISION RULE; MISSING COVARIATE DATA; OTTAWA ANKLE RULES; INDEPENDENT EXTERNAL VALIDATION; OPERATING CHARACTERISTIC CURVES; LOGISTIC-REGRESSION ANALYSIS;
D O I
10.7326/M14-0698
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) Statement includes a 22-item checklist, which aims to improve the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. This explanation and elaboration document describes the rationale; clarifies the meaning of each item; and discusses why transparent reporting is important, with a view to assessing risk of bias and clinical usefulness of the prediction model. Each checklist item of the TRIPOD Statement is explained in detail and accompanied by published examples of good reporting. The document also provides a valuable reference of issues to consider when designing, conducting, and analyzing prediction model studies. To aid the editorial process and help peer reviewers and, ultimately, readers and systematic reviewers of prediction model studies, it is recommended that authors include a completed checklist in their submission. The TRIPOD checklist can also be downloaded from www.tripod-statement.org.
引用
收藏
页码:W1 / W73
页数:73
相关论文
共 538 条
  • [1] Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study
    Abbasi, Ali
    Peelen, Linda M.
    Corpeleijn, Eva
    van der Schouw, Yvonne T.
    Stolk, Ronald P.
    Spijkerman, Annemieke M. W.
    van der A, Daphne L.
    Moons, Karel G. M.
    Navis, Gerjan
    Bakker, Stephan J. L.
    Beulens, Joline W. J.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2012, 345
  • [2] Hepascore: An accurate validated predictor of liver fibrosis in chronic hepatitis C infection
    Adams, LA
    Bulsara, M
    Rossi, E
    Deboer, B
    Speers, D
    George, J
    Kench, J
    Farrell, G
    McCaughan, GW
    Jeffrey, GP
    [J]. CLINICAL CHEMISTRY, 2005, 51 (10) : 1867 - 1873
  • [3] Developing and validating risk prediction models in an individual participant data meta-analysis
    Ahmed, Ikhlaaq
    Debray, Thomas P. A.
    Moons, Karel G. M.
    Riley, Richard D.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [4] Measures of explained variation for a regression model used in survival analysis
    Akazawa K.
    [J]. Journal of Medical Systems, 1997, 21 (4) : 229 - 238
  • [5] Case complexity scores in congenital heart surgery: A comparative study of the Aristotle Basic Complexity score and the Risk Adjustment in Congenital Heart Surgery (RACHS-1) system
    Al-Radi, Osman O.
    Harrell, Frank E., Jr.
    Caldarone, Christopher A.
    McCrindle, Brian W.
    Jacobs, Jeffrey P.
    Williams, M. Gail
    Van Arsdell, Glen S.
    Williams, William G.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2007, 133 (04) : 865 - 875
  • [6] Risk Prediction Models for Mortality in Ambulatory Patients With Heart Failure A Systematic Review
    Alba, Ana C.
    Agoritsas, Thomas
    Jankowski, Milosz
    Courvoisier, Delphine
    Walter, Stephen D.
    Guyatt, Gordon H.
    Ross, Heather J.
    [J]. CIRCULATION-HEART FAILURE, 2013, 6 (05) : 881 - 889
  • [7] DANGERS OF USING OPTIMAL CUTPOINTS IN THE EVALUATION OF PROGNOSTIC FACTORS
    ALTMAN, DG
    LAUSEN, B
    SAUERBREI, W
    SCHUMACHER, M
    [J]. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1994, 86 (11) : 829 - 835
  • [8] Altman DG, 2000, STAT MED, V19, P453, DOI 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.3.CO
  • [9] 2-X
  • [10] The Time Has Come to Register Diagnostic and Prognostic Research
    Altman, Douglas G.
    [J]. CLINICAL CHEMISTRY, 2014, 60 (04) : 580 - 582