Adaptive Objective Selection for Correlated Objectives in Multi-Objective Reinforcement Learning

被引:0
|
作者
Brys, Tim [1 ]
Van Moffaert, Kristof [1 ]
Nowe, Ann [1 ]
Taylor, Matthew E. [2 ]
机构
[1] Vrije Univ Brussel, Brussels, Belgium
[2] Washington State Univ, Pullman, WA 99164 USA
关键词
Reinforcement Learning; Multi-Objective Optimization; Adaptive Objective Selection;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a novel scale-invariant and parameterless technique, called adaptive objective selection, that allows a temporal-difference learning agent to exploit the correlation between objectives in a multi-objective problem. It identifies and follows in each state the objective whose estimates it is most confident about. We propose several variants of the approach and empirically demonstrate it on a toy problem.
引用
收藏
页码:1349 / 1350
页数:2
相关论文
共 50 条
  • [41] Hypervolume-Based Multi-Objective Reinforcement Learning
    Van Moffaert, Kristof
    Drugan, Madalina M.
    Nowe, Ann
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 352 - 366
  • [42] A practical guide to multi-objective reinforcement learning and planning
    Conor F. Hayes
    Roxana Rădulescu
    Eugenio Bargiacchi
    Johan Källström
    Matthew Macfarlane
    Mathieu Reymond
    Timothy Verstraeten
    Luisa M. Zintgraf
    Richard Dazeley
    Fredrik Heintz
    Enda Howley
    Athirai A. Irissappane
    Patrick Mannion
    Ann Nowé
    Gabriel Ramos
    Marcello Restelli
    Peter Vamplew
    Diederik M. Roijers
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [43] Incremental reinforcement learning for multi-objective robotic tasks
    Garcia, Javier
    Iglesias, Roberto
    Rodriguez, Miguel A.
    Regueiro, Carlos V.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 51 (03) : 911 - 940
  • [44] Incremental reinforcement learning for multi-objective robotic tasks
    Javier García
    Roberto Iglesias
    Miguel A. Rodríguez
    Carlos V. Regueiro
    Knowledge and Information Systems, 2017, 51 : 911 - 940
  • [45] An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning
    Zhang, Jianxiong
    Guo, Bing
    Ding, Xuefeng
    Hu, Dasha
    Tang, Jun
    Du, Ke
    Tang, Chao
    Jiang, Yuming
    APPLIED SOFT COMPUTING, 2024, 154
  • [46] A Multi-objective optimization based on adaptive environmental selection
    Weng Li-guo
    Ji, Zhuangzhuang
    Xia, Min
    Wang, An
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 999 - 1003
  • [47] A New Gateway Selection Algorithm Based on Multi-Objective Integer Programming and Reinforcement Learning
    Alabbas, Hasanain
    Huszak, Arpad
    INFOCOMMUNICATIONS JOURNAL, 2022, 14 (04): : 4 - 10
  • [48] Switching Policies based on Multi-Objective Reinforcement Learning for Adaptive Traffic Signal Control
    Saiki, Takumi
    Arai, Sachiyo
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 488 - 493
  • [49] Deep Reinforcement Learning for Adaptive Parameter Control in Differential Evolution for Multi-Objective Optimization
    Reijnen, Robbert
    Zhang, Yingqian
    Bukhsh, Zaharah
    Guzek, Mateusz
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 804 - 811
  • [50] Reinforcement learning-based multi-objective differential evolution algorithm for feature selection
    Yu, Xiaobing
    Hu, Zhengpeng
    Luo, Wenguan
    Xue, Yu
    INFORMATION SCIENCES, 2024, 661