Well-posedness for the nonlinear fractional Schrodinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation

被引:65
|
作者
Guo, Boling [1 ]
Huo, Zhaohui [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
fractional Schrodinger equation; fractional Ginzburg-Landau equation; well-posedness; inviscid limit behavior; SPACES; MEDIA;
D O I
10.2478/s13540-013-0014-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-posedness for the Cauchy problem of the nonlinear fractional Schrodinger equation u(t) + i(-Delta)(alpha)u + i vertical bar u vertical bar(2)u = 0, (x, t) is an element of R-n x R, 1/2 < alpha < 1 is considered. The local well-posedness in subcritical space H-s with s > n/2 -alpha is obtained. Moreover, the inviscid limit behavior of solution for the fractional Ginzburg-Landau equation u(t) + (nu+i)(-Delta)(alpha)u + i vertical bar u vertical bar(2)u - 0 is also considered. It is shown that the solution of the fractional Ginzburg-Landau equation converges to the solution of nonlinear fractional Schrodinger equation in the natural space C([0, T]; H-s) with s > n/2 - alpha if nu tends to zero.
引用
收藏
页码:226 / 242
页数:17
相关论文
共 50 条
  • [1] Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation
    Boling Guo
    Zhaohui Huo
    Fractional Calculus and Applied Analysis, 2013, 16 : 226 - 242
  • [2] Well-posedness of the fractional Ginzburg-Landau equation
    Gu, Xian-Ming
    Shi, Lin
    Liu, Tianhua
    APPLICABLE ANALYSIS, 2019, 98 (14) : 2545 - 2558
  • [3] Well-posedness and dynamics for the fractional Ginzburg-Landau equation
    Pu, Xueke
    Guo, Boling
    APPLICABLE ANALYSIS, 2013, 92 (02) : 318 - 334
  • [4] Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces
    Li, Jingna
    Xia, Li
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1074 - 1084
  • [5] Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg-Landau equation
    Huo, Zhaohui
    Jia, Yueling
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (01): : 18 - 51
  • [6] The Inviscid Limit of the Fractional Complex Ginzburg-Landau Equation
    Wang, Lijun
    Li, Jingna
    Xia, Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (06) : 333 - 341
  • [7] Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation
    Guo, Boling
    Huo, Zhaohui
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) : 247 - 255
  • [8] Unconditional Well-Posedness In the Energy Space For The Ginzburg-Landau Equation
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [9] The inviscid limit for the complex Ginzburg-Landau equation
    Machihara, S
    Nakamura, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) : 552 - 564
  • [10] The inviscid limit of the complex Ginzburg-Landau equation
    Wu, JH
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 142 (02) : 413 - 433