Well-posedness for the nonlinear fractional Schrodinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation

被引:65
作者
Guo, Boling [1 ]
Huo, Zhaohui [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
fractional Schrodinger equation; fractional Ginzburg-Landau equation; well-posedness; inviscid limit behavior; SPACES; MEDIA;
D O I
10.2478/s13540-013-0014-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-posedness for the Cauchy problem of the nonlinear fractional Schrodinger equation u(t) + i(-Delta)(alpha)u + i vertical bar u vertical bar(2)u = 0, (x, t) is an element of R-n x R, 1/2 < alpha < 1 is considered. The local well-posedness in subcritical space H-s with s > n/2 -alpha is obtained. Moreover, the inviscid limit behavior of solution for the fractional Ginzburg-Landau equation u(t) + (nu+i)(-Delta)(alpha)u + i vertical bar u vertical bar(2)u - 0 is also considered. It is shown that the solution of the fractional Ginzburg-Landau equation converges to the solution of nonlinear fractional Schrodinger equation in the natural space C([0, T]; H-s) with s > n/2 - alpha if nu tends to zero.
引用
收藏
页码:226 / 242
页数:17
相关论文
共 11 条
  • [1] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [2] Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J]. Chen, W;Holm, S. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004(04)
  • [3] Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrodinger equation[J]. Guo Boling;Han Yongqian;Xin Jie. APPLIED MATHEMATICS AND COMPUTATION, 2008(01)
  • [4] Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation[J]. Guo, Boling;Huo, Zhaohui. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011(02)
  • [5] Global well-posedness of the Benjamin-Ono equation in low-regularity spaces[J]. Ionescu, Alexandru D.;Kenig, Carlos E. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007(03)
  • [6] THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES[J]. KENIG, CE;PONCE, G;VEGA, L. DUKE MATHEMATICAL JOURNAL, 1993(01)
  • [7] A bilinear estimate with applications to the KdV equation[J]. Kenig, CE;Ponce, G;Vega, L. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996(02)
  • [8] Fractional Schrodinger equation[J]. Laskin, N. PHYSICAL REVIEW E, 2002(05)
  • [9] Fractional quantum mechanics and Levy path integrals[J]. Laskin, N. PHYSICS LETTERS A, 2000(4-6)
  • [10] Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations[J]. Tao, T. AMERICAN JOURNAL OF MATHEMATICS, 2001(05)