Linear and Quadratic Sufficiency and Commutativity

被引:1
作者
Ferreira, Sandra S. [1 ]
Ferreira, Dario [2 ]
Nunes, Celia [2 ]
机构
[1] Univ Beira Interior, Dept Math, P-6200 Covilha, Portugal
[2] Univ Beira Interior, Ctr Math, P-6200 Covilha, Portugal
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B | 2012年 / 1479卷
关键词
Linear sufficiency; quadratic sufficiency; orthogonal projection; linear completeness;
D O I
10.1063/1.4756496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a mixed model let T be the orthogonal projection matrix on the range space spanned by the mean vector. If the model has variance-covariance matrix sigma V-2 we use commutative Jordan algebras to show that Ty is both linear sufficient and linear complete and that Ty, y'V(+)y with V+ the Moore-Penrose inverse of V is quadratic sufficient whenever T and V commute.
引用
收藏
页码:1694 / 1697
页数:4
相关论文
共 6 条
  • [1] [Anonymous], 1999, The analysis of variance
  • [2] Jordan algebras, generating pivot variables and orthogonal normal models
    Fonseca, Miguel
    Mexia, Joao Tiago
    Zmyslony, Roman
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2007, 10 (02) : 305 - 326
  • [3] SUFFICIENCY AND COMPLETENESS IN THE LINEAR-MODEL
    MUELLER, J
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 21 (02) : 312 - 323
  • [4] Schott J., 1996, WILEY SERIES PROBABI
  • [5] QUADRATIC SUBSPACES AND COMPLETENESS
    SEELY, J
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (02): : 710 - &
  • [6] Zmyslony R, 1980, Lecture Notes in Statistics, V2, P365