Protein kinase biochemistry and drug discovery

被引:111
作者
Schwartz, Phillip A. [1 ]
Murray, Brion W. [1 ]
机构
[1] Pfizer Inc, Pfizer Worldwide Res & Dev, San Diego, CA 92121 USA
关键词
Protein kinase; Phosphorylation; Drug discovery; Enzyme mechanism; Irreversible inhibition; Phosphotransfer; GROWTH-FACTOR RECEPTOR; CELL LUNG-CANCER; ROUS-SARCOMA-VIRUS; TYROSINE KINASE; KINETIC-MECHANISM; PHOSPHORYL-TRANSFER; TRANSITION-STATE; CATALYTIC SUBUNIT; CRYSTAL-STRUCTURE; META-PHOSPHATE;
D O I
10.1016/j.bioorg.2011.07.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 210
页数:19
相关论文
共 236 条
[1]   Probing the catalytic mechanism of the insulin receptor kinase with a tetrafluorotyrosine-containing peptide substrate [J].
Ablooglu, AJ ;
Till, JH ;
Kim, K ;
Parang, K ;
Cole, PA ;
Hubbard, SR ;
Kohanski, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (39) :30394-30398
[2]   ENERGETIC LIMITS OF PHOSPHOTRANSFER IN THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN-KINASE AS MEASURED BY VISCOSITY EXPERIMENTS [J].
ADAMS, JA ;
TAYLOR, SS .
BIOCHEMISTRY, 1992, 31 (36) :8516-8522
[3]   Kinetic and catalytic mechanisms of protein kinases [J].
Adams, JA .
CHEMICAL REVIEWS, 2001, 101 (08) :2271-2290
[4]  
ADAMS JA, 1993, J BIOL CHEM, V268, P7747
[5]   MAPPING THE TRANSITION-STATE FOR ATP HYDROLYSIS - IMPLICATIONS FOR ENZYMATIC CATALYSIS [J].
ADMIRAAL, SJ ;
HERSCHLAG, D .
CHEMISTRY & BIOLOGY, 1995, 2 (11) :729-739
[6]   The substrate-assisted general base catalysis model for phosphate monoester hydrolysis: Evaluation using reactivity comparisons [J].
Admiraal, SJ ;
Herschlag, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (10) :2145-2148
[7]   Activation of oxygen nucleophiles in enzyme catalysis [J].
Anderson, Vernon E. ;
Ruszczycky, Mark W. ;
Harris, Michael E. .
CHEMICAL REVIEWS, 2006, 106 (08) :3236-3251
[8]   What determines the intracellular ATP concentration [J].
Ataullakhanov, FI ;
Vitvitsky, VM .
BIOSCIENCE REPORTS, 2002, 22 (5-6) :501-511
[9]   Activation of tyrosine kinases by mutation of the gatekeeper threonine [J].
Azam, Mohammad ;
Seeliger, Markus A. ;
Gray, Nathanael S. ;
Kuriyan, John ;
Daley, George Q. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (10) :1109-1118
[10]   Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance [J].
Azam, Mohammad ;
Nardi, Valentina ;
Shakespeare, William C. ;
Metcalf, Chester A., III ;
Bohacek, Regine S. ;
Wang, Yihan ;
Sundaramoorthi, Raji ;
Sliz, Piotr ;
Veach, Darren R. ;
Bornmann, William G. ;
Clarkson, Bayard ;
Dalgarno, David C. ;
Sawyer, Tomi K. ;
Daley, George Q. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9244-9249