Critical exponents of steady-state phase transitions in fermionic lattice models

被引:59
作者
Hoening, M. [1 ]
Moos, M.
Fleischhauer, M.
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
DRIVEN;
D O I
10.1103/PhysRevA.86.013606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss reservoir-induced phase transitions of lattice fermions in the nonequilibrium steady state of an open system with local reservoirs. These systems may become critical in the sense of a diverging correlation length on changing the reservoir coupling. We here show that the transition to a critical state is associated with a vanishing gap in the damping spectrum. It is shown that, although in linear systems there can be a transition to a critical state, there is no reservoir-induced quantum phase transition between distinct phases with a nonvanishing damping gap. We derive the static and dynamical critical exponents corresponding to the transition to a critical state and show that their possible values, defining universality classes of reservoir-induced phase transitions, are determined by the coupling range of the independent local reservoirs. If a reservoir couples to N neighboring lattice sites, the critical exponent can assume all fractions from 1 to 1/(N - 1).
引用
收藏
页数:7
相关论文
共 15 条
  • [1] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [2] Bravyi S, 2005, QUANTUM INF COMPUT, V5, P216
  • [3] Dissipation-Induced d-Wave Pairing of Fermionic Atoms in an Optical Lattice
    Diehl, S.
    Yi, W.
    Daley, A. J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (22)
  • [4] Quantum states and phases in driven open quantum systems with cold atoms
    Diehl, S.
    Micheli, A.
    Kantian, A.
    Kraus, B.
    Buechler, H. P.
    Zoller, P.
    [J]. NATURE PHYSICS, 2008, 4 (11) : 878 - 883
  • [5] Diehl S, 2011, NAT PHYS, V7, P971, DOI [10.1038/NPHYS2106, 10.1038/nphys2106]
  • [6] Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas
    Duerr, S.
    Garcia-Ripoll, J. J.
    Syassen, N.
    Bauer, D. M.
    Lettner, M.
    Cirac, J. I.
    Rempe, G.
    [J]. PHYSICAL REVIEW A, 2009, 79 (02):
  • [7] Eisert J., 2010, ARXIV10125013
  • [8] Spectral gap and exponential decay of correlations
    Hastings, MB
    Koma, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) : 781 - 804
  • [9] Dissipation-induced Tonks-Girardeau gas of polaritons
    Kiffner, M.
    Hartmann, M. J.
    [J]. PHYSICAL REVIEW A, 2010, 81 (02):
  • [10] Muller M., 2012, ARXIV12036595