Critical exponents of steady-state phase transitions in fermionic lattice models

被引:60
作者
Hoening, M. [1 ]
Moos, M.
Fleischhauer, M.
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
DRIVEN;
D O I
10.1103/PhysRevA.86.013606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss reservoir-induced phase transitions of lattice fermions in the nonequilibrium steady state of an open system with local reservoirs. These systems may become critical in the sense of a diverging correlation length on changing the reservoir coupling. We here show that the transition to a critical state is associated with a vanishing gap in the damping spectrum. It is shown that, although in linear systems there can be a transition to a critical state, there is no reservoir-induced quantum phase transition between distinct phases with a nonvanishing damping gap. We derive the static and dynamical critical exponents corresponding to the transition to a critical state and show that their possible values, defining universality classes of reservoir-induced phase transitions, are determined by the coupling range of the independent local reservoirs. If a reservoir couples to N neighboring lattice sites, the critical exponent can assume all fractions from 1 to 1/(N - 1).
引用
收藏
页数:7
相关论文
共 15 条
[1]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[2]  
Bravyi S, 2005, QUANTUM INF COMPUT, V5, P216
[3]   Dissipation-Induced d-Wave Pairing of Fermionic Atoms in an Optical Lattice [J].
Diehl, S. ;
Yi, W. ;
Daley, A. J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)
[4]   Quantum states and phases in driven open quantum systems with cold atoms [J].
Diehl, S. ;
Micheli, A. ;
Kantian, A. ;
Kraus, B. ;
Buechler, H. P. ;
Zoller, P. .
NATURE PHYSICS, 2008, 4 (11) :878-883
[5]  
Diehl S, 2011, NAT PHYS, V7, P971, DOI [10.1038/NPHYS2106, 10.1038/nphys2106]
[6]   Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas [J].
Duerr, S. ;
Garcia-Ripoll, J. J. ;
Syassen, N. ;
Bauer, D. M. ;
Lettner, M. ;
Cirac, J. I. ;
Rempe, G. .
PHYSICAL REVIEW A, 2009, 79 (02)
[7]  
Eisert J., 2010, ARXIV10125013
[8]   Spectral gap and exponential decay of correlations [J].
Hastings, MB ;
Koma, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :781-804
[9]   Dissipation-induced Tonks-Girardeau gas of polaritons [J].
Kiffner, M. ;
Hartmann, M. J. .
PHYSICAL REVIEW A, 2010, 81 (02)
[10]  
Muller M., 2012, ARXIV12036595