High-throughput computational design of cathode coatings for Li-ion batteries

被引:163
|
作者
Aykol, Muratahan [1 ,3 ]
Kim, Soo [1 ]
Hegde, Vinay I. [1 ]
Snydacker, David [1 ]
Lu, Zhi [1 ]
Hao, Shiqiang [1 ]
Kirklin, Scott [1 ]
Morgan, Dane [2 ]
Wolverton, C. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; LICOO2; CATHODES; INTERCALATION CATHODE; LITHIUM TRANSPORT; SPINEL ELECTRODES; COBALT OXIDE; STABILITY; VOLTAGE; TRANSITION; STORAGE;
D O I
10.1038/ncomms13779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg-3(BO3)(2) and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    npj Computational Materials, 2
  • [12] Computational understanding of Li-ion batteries
    Urban, Alexander
    Seo, Dong-Hwa
    Ceder, Gerbrand
    NPJ COMPUTATIONAL MATERIALS, 2016, 2
  • [13] Computational modeling of Li-ion batteries
    D. Grazioli
    M. Magri
    A. Salvadori
    Computational Mechanics, 2016, 58 : 889 - 909
  • [14] Computational modeling of Li-ion batteries
    Grazioli, D.
    Magri, M.
    Salvadori, A.
    COMPUTATIONAL MECHANICS, 2016, 58 (06) : 889 - 909
  • [15] Computational Design to Suppress Thermal Runaway of Li-Ion Batteries via Atomic Substitutions to Cathode Materials
    Yoshimoto, Yuki
    Toma, Takahiro
    Hongo, Kenta
    Nakano, Kousuke
    Maezono, Ryo
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 23355 - 23363
  • [16] Advances in cathode technology for Li-ion batteries
    Chua, D
    Choblet, A
    Manivanna, V
    Lin, HW
    Wolfenstine, J
    SIXTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 2001, : 275 - 275
  • [17] High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
    Shi, Ji-Lei
    Xiao, Dong-Dong
    Ge, Mingyuan
    Yu, Xiqian
    Chu, Yong
    Huang, Xiaojing
    Zhang, Xu-Dong
    Yin, Ya-Xia
    Yang, Xiao-Qing
    Guo, Yu-Guo
    Gu, Lin
    Wan, Li-Jun
    ADVANCED MATERIALS, 2018, 30 (09)
  • [18] Development of high power density cathode materials for Li-ion batteries
    Ketterer, Bernt
    Vasilchina, Hristina
    Seemann, Klaus
    Ulrich, Sven
    Besser, Heino
    Pfleging, Wilhelm
    Kaiser, Tatjana
    Adelhelm, Christel
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2008, 99 (10) : 1171 - 1176
  • [19] Erratum: Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    npj Computational Materials, 2
  • [20] A Macromolecule Cathode for High-Performance Li-Ion and Na-Ion Batteries
    Hu, Jiahui
    Tang, Wu
    Ma, Huilin
    Fan, Kexin
    Li, Wenjun
    Fan, Cong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (11) : 4576 - 4586