On the representations generated by Eisenstein series of weight n+3/2

被引:1
作者
Horinaga, Shuji [1 ]
机构
[1] Kyoto Univ, Grad Sch Math, Kyoto 6068502, Japan
关键词
Siegel modular forms; Nearly holomorphic modular forms; Eisenstein series; Automorphic forms;
D O I
10.1016/j.jnt.2019.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Eisenstein series E(z, s; k, chi, N) of weight k = (n + 3)/2, level N > 1 and a Dirichlet character chi modulo N such that chi(2) = 1. Shimura proved that E(z, k/2; k, chi, N) is a nearly holomorphic function. We prove that E(z, k/2; k, chi, N) generates an indecomposable reducible (g, K)-module of length 2. These are new examples of indecomposable reducible (g, K)-modules generated by nearly holomorphic modular forms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 227
页数:22
相关论文
共 50 条
[21]   The dimension of the space of Siegel–Eisenstein series of weight one [J].
Keiichi Gunji .
Mathematische Zeitschrift, 2008, 260 :187-201
[22]   On Eisenstein series in M2k(Γ0(N)) and their applications [J].
Aygin, Zafer Selcuk .
JOURNAL OF NUMBER THEORY, 2019, 195 :358-375
[23]   ANALOGUES OF LEVEL-N EISENSTEIN SERIES [J].
Tsumura, Hirofumi .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 255 (02) :489-510
[24]   Zeros of newform Eisenstein series on Γ0(N) [J].
Brazelton, Thomas ;
Jakicic, Victoria .
JOURNAL OF NUMBER THEORY, 2018, 190 :109-130
[25]   Zeros of certain combinations of Eisenstein series of weight 2k, 3k, and k plus l [J].
Klangwang, Jetjaroen .
JOURNAL OF NUMBER THEORY, 2019, 198 :124-138
[26]   Eisenstein series associated with Γ0(2) [J].
Heekyoung Hahn .
The Ramanujan Journal, 2008, 15 :235-257
[27]   Eisenstein series associated with Γ0(2) [J].
Hahn, Heekyoung .
RAMANUJAN JOURNAL, 2008, 15 (02) :235-257
[28]   The dimension of the space of Siegel-Eisenstein series of weight one [J].
Gunji, Keiichi .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (01) :187-201
[29]   The functional equations of Langlands Eisenstein series for SL(n, ℤ) [J].
Dorian Goldfeld ;
Eric Stade ;
Michael Woodbury .
Science China Mathematics, 2023, 66 :2731-2748
[30]   A Jacobi-Eisenstein series of weight two on congruence Jacobi subgroup [J].
Lu HongWen ;
Zhou HaiGang .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2405-2410