On the representations generated by Eisenstein series of weight n+3/2

被引:1
|
作者
Horinaga, Shuji [1 ]
机构
[1] Kyoto Univ, Grad Sch Math, Kyoto 6068502, Japan
关键词
Siegel modular forms; Nearly holomorphic modular forms; Eisenstein series; Automorphic forms;
D O I
10.1016/j.jnt.2019.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Eisenstein series E(z, s; k, chi, N) of weight k = (n + 3)/2, level N > 1 and a Dirichlet character chi modulo N such that chi(2) = 1. Shimura proved that E(z, k/2; k, chi, N) is a nearly holomorphic function. We prove that E(z, k/2; k, chi, N) generates an indecomposable reducible (g, K)-module of length 2. These are new examples of indecomposable reducible (g, K)-modules generated by nearly holomorphic modular forms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 227
页数:22
相关论文
共 50 条
  • [1] Higher weight on GL(3). I: The Eisenstein series
    Buttcane, Jack
    FORUM MATHEMATICUM, 2018, 30 (03) : 681 - 722
  • [2] Eisenstein series of 3/2 weight and one conjecture of Kaplansky
    王学理
    裴定一
    Science China Mathematics, 2001, (10) : 1278 - 1283
  • [3] Eisenstein series of 3/2 weight and one conjecture of Kaplansky
    Wang, XL
    Pei, DY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (10): : 1278 - 1283
  • [4] Eisenstein series of 3/2 weight and one conjecture of Kaplansky
    Xueli Wang
    Dingyi Pei
    Science in China Series A: Mathematics, 2001, 44 : 1278 - 1283
  • [5] Small representations, string instantons, and Fourier modes of Eisenstein series
    Green, Michael B.
    Miller, Stephen D.
    Vanhove, Pierre
    JOURNAL OF NUMBER THEORY, 2015, 146 : 187 - 309
  • [6] Eisenstein Series of 3/2 Weight and Eligible Numbers of Positive Definite Ternary Forms
    Pei D.
    Rosenberger G.
    Wang X.
    Results in Mathematics, 2001, 39 (3-4) : 292 - 319
  • [7] Derivatives of Eisenstein series of weight 2 and intersections of modular correspondences
    Sungmun Cho
    Shunsuke Yamana
    Takuya Yamauchi
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2022, 92 : 27 - 52
  • [8] Derivatives of Eisenstein series of weight 2 and intersections of modular correspondences
    Cho, Sungmun
    Yamana, Shunsuke
    Yamauchi, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2022, 92 (01): : 27 - 52
  • [9] Zeros of the weight two Eisenstein series
    Wood, Rachael
    Young, Matthew P.
    JOURNAL OF NUMBER THEORY, 2014, 143 : 320 - 333
  • [10] Basic representations for Eisenstein series from their differential equations
    Huber, Tim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 135 - 146