Stability of anisotropic capillary surfaces between two parallel planes

被引:24
作者
Koiso, M [1 ]
Palmer, B
机构
[1] Nara Womens Univ, Dept Math, Nara 6308506, Japan
[2] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA
关键词
D O I
10.1007/s00526-005-0336-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of capillary surfaces without gravity for anisotropic free surface energies. For a large class of rotationally symmetric energy functionals, it is shown that the only stable equilibria supported on parallel planes are either cylinders or a part of the Wulff shape.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 13 条
[1]  
[Anonymous], 1969, GRUNDLEHREN MATH WIS
[2]  
ATHANASSENAS M, 1987, J REINE ANGEW MATH, V377, P97
[3]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[4]   On surfaces of prescribed F-mean curvature [J].
Clarenz, U ;
von der Mosel, H .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 213 (01) :15-36
[5]  
Courant R., 1989, Methods of Mathematical Physics, VI
[6]  
Finn R., 1986, EQUILIBRIUM CAPILLAR, V284
[7]  
Gilbarg D, 1998, Elliptic Partial Differential Equations of Second Order, V224
[8]  
Hopf H., 1989, LECT NOTES MATH, V1000
[9]  
KOISO M, GEOMETRY STABILITY S
[10]   Stability of the Wulff shape [J].
Palmer, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) :3661-3667