An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries

被引:69
作者
Han, Jung-Gu [1 ]
Hwang, Chihyun [2 ]
Kim, Su Hwan [1 ]
Park, Chanhyun [1 ]
Kim, Jonghak [2 ]
Jung, Gwan Yeong [1 ]
Baek, Kyungeun [1 ]
Chae, Sujong [1 ]
Kang, Seok Ju [1 ]
Cho, Jaephil [1 ]
Kwak, Sang Kyu [1 ]
Song, Hyun-Kon [2 ]
Choi, Nam-Soon [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Energy Engn, 50 UNIST Gil, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Chem Engn, 50 UNIST Gil, Ulsan 44919, South Korea
关键词
cathode-electrolyte interface; electrolyte additives; lithium-ion batteries; reactive oxygen species; superoxide scavengers; SUPEROXIDE-DISMUTASE; CATHODE MATERIALS; MANGANESE OXIDES; SURFACE; CARBONATE; DECOMPOSITION; DEGRADATION; DISSOLUTION; MECHANISMS; MIGRATION;
D O I
10.1002/aenm.202000563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity Li-rich layered oxide cathodes along with Si-incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high-energy-density lithium-ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid-decorated fullerene (MA-C-60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high-capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long-term stability of the interfacial structures of electrodes. Moreover, an MA-C-60-added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode-electrolyte interface for Li-rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high-capacity electrodes in LIBs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Toward High-Energy-Density Aqueous Lithium-Ion Batteries Using Silver Nanowires as Current Collectors
    Kong, Jingyi
    Wang, Yangyang
    Wu, Ying
    Zhang, Liang
    Gong, Min
    Lin, Xiang
    Wang, Dongrui
    MOLECULES, 2022, 27 (23):
  • [22] Electrolyte Oxidation Pathways in Lithium-Ion Batteries
    Rinkel, Bernardine L. D.
    Hall, David S.
    Temprano, Israel
    Grey, Clare P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (35) : 15058 - 15074
  • [23] Dopamine as a Novel Electrolyte Additive for High-Voltage Lithium-Ion Batteries
    Lee, Hoogil
    Han, Taeyeong
    Cho, Kuk Young
    Ryou, Myung-Hyun
    Lee, Yong Min
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21366 - 21372
  • [24] Understanding the Cathode-Electrolyte Interphase in Lithium-Ion Batteries
    Sungjemmenla
    Vineeth, S. K.
    Soni, Chhail Bihari
    Kumar, Vipin
    Seh, Zhi Wei
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [25] A bicomponent electrolyte additive towards stabilized interface for high-performance lithium-ion batteries
    Yu, Ziyang
    Bai, Maohui
    Hong, Bo
    Lai, Yanqing
    Liu, Yexiang
    IONICS, 2022, 28 (09) : 4095 - 4101
  • [26] Cobalt in high-energy-density layered cathode materials for lithium ion batteries
    Chu, Binbin
    Guo, Yu-Jie
    Shi, Ji-Lei
    Yin, Ya-Xia
    Huang, Tao
    Su, Hang
    Yu, Aishui
    Guo, Yu-Guo
    Li, Yangxing
    JOURNAL OF POWER SOURCES, 2022, 544
  • [27] Additive Manufacturing of Aqueous-Processed LiMn2O4 Thick Electrodes for High-Energy-Density Lithium-Ion Batteries
    Airoldi, Lorenzo
    Anselmi-Tamburini, Umberto
    Vigani, Barbara
    Rossi, Silvia
    Mustarelli, Piercarlo
    Quartarone, Eliana
    BATTERIES & SUPERCAPS, 2020, 3 (10) : 1040 - 1050
  • [28] Sulfur-doped hard carbon hybrid anodes with dual lithium-ion/metal storage bifunctionality for high-energy-density lithium-ion batteries
    Cho, Sungmin
    Hyun, Jong Chan
    Ha, Son
    Choi, Yeonhua
    Seong, Honggyu
    Choi, Jaewon
    Jin, Hyoung-Joon
    Yun, Young Soo
    CARBON ENERGY, 2023, 5 (01)
  • [29] Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries
    Han, Meisheng
    Mu, Yongbiao
    Wei, Lei
    Zeng, Lin
    Zhao, Tianshou
    CARBON ENERGY, 2024, 6 (04)
  • [30] Selection of Electrolyte Additive Quantities for Lithium-Ion Batteries Using Bayesian Optimization
    Hildenbrand, Felix
    Aupperle, Felix
    Stahl, Gereon
    Figgmeier, Egbert
    Sauer, Dirk Uwe
    BATTERIES & SUPERCAPS, 2022, 5 (07)