The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies

被引:33
|
作者
Krupkova, Olga [1 ]
Cambria, Elena [1 ]
Besse, Lenka [2 ]
Besse, Andrej [2 ]
Bowles, Robert [3 ,4 ]
Wuertz-Kozak, Karin [1 ,5 ,6 ,7 ]
机构
[1] Swiss Fed Inst Technol, Inst Biomech, Dept Hlth Sci & Technol, Hoenggerbergring 64, CH-8093 Zurich, Switzerland
[2] Cantonal Hosp St Gallen, Dept Oncol & Hematol, St Gallen, Switzerland
[3] Univ Utah, Dept Bioengn, Salt Lake City, UT 84112 USA
[4] Univ Utah, Dept Orthopaed, Salt Lake City, UT USA
[5] Schon Klin Munchen Harlaching, Spine Ctr, Munich, Germany
[6] Paracelsus Private Med Univ Salzburg, Acad Teaching Hosp & Spine Res Inst, Salzburg, Austria
[7] Univ Potsdam, Dept Hlth Sci, Potsdam, Germany
来源
JOR SPINE | 2018年 / 1卷 / 01期
基金
瑞士国家科学基金会;
关键词
CRISPR/Cas9; degenerative disc disease; intervertebral disc; low back pain; targeted genome engineering; NUCLEUS PULPOSUS CELLS; IN-VIVO; STEM-CELLS; INFLAMMATORY MEDIATORS; CAS9; RIBONUCLEOPROTEIN; EXTRACELLULAR-MATRIX; MOLECULAR THERAPY; GENE ACTIVATION; RNA; DEGENERATION;
D O I
10.1002/jsp2.1003
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
The CRISPR/Cas9 system has emerged as a powerful tool for mammalian genome engineering. In basic and translational intervertebral disc (IVD) research, this technique has remarkable potential to answer fundamental questions on pathway interactions, to simulate IVD pathologies, and to promote drug development. Furthermore, the precisely targeted CRISPR/Cas9 gene therapy holds promise for the effective and targeted treatment of degenerative disc disease and low back pain. In this perspective, we provide an overview of recent CRISPR/Cas9 advances stemming from/with transferability to IVD research, outline possible treatment approaches for degenerative disc disease, and discuss current limitations that may hinder clinical translation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [2] Application of CRISPR/Cas9 genome editing to the study and treatment of disease
    Andrea Pellagatti
    Hamid Dolatshad
    Simona Valletta
    Jacqueline Boultwood
    Archives of Toxicology, 2015, 89 : 1023 - 1034
  • [3] Application of CRISPR/Cas9 genome editing to the study and treatment of disease
    Pellagatti, Andrea
    Dolatshad, Hamid
    Valletta, Simona
    Boultwood, Jacqueline
    ARCHIVES OF TOXICOLOGY, 2015, 89 (07) : 1023 - 1034
  • [4] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [5] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [6] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [7] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Alexandra C. Chadwick
    Kiran Musunuru
    Current Atherosclerosis Reports, 2017, 19
  • [8] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Chadwick, Alexandra C.
    Musunuru, Kiran
    CURRENT ATHEROSCLEROSIS REPORTS, 2017, 19 (07)
  • [9] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [10] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41