Heat kernels of two-dimensional magnetic Schrodinger and Pauli operators

被引:16
作者
Kovarik, Hynek [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, Turin, Italy
关键词
INEQUALITY; SEMIGROUPS; BEHAVIOR; FIELDS;
D O I
10.1007/s00526-011-0437-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the heat semigroups generated by two-dimensional magnetic Schrodinger and Pauli operators with compactly supported magnetic field. We show that the large time behaviour of the associated heat kernels is determined by the total flux of the magnetic fields.
引用
收藏
页码:351 / 374
页数:24
相关论文
共 25 条
[1]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[2]  
Cycon H.L., 1987, Schrodinger Operators with Application to Quantum Mechanics and Global Geometry
[3]   Non-Gaussian aspects of heat kernel behaviour [J].
Davies, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :105-125
[4]  
DAVIES EB, 1989, HEAT KERNELS SPECTRA
[5]  
Dunford N., 1988, Linear Operators. Pt. II. Spectral theory
[6]   ESTIMATES ON STOCHASTIC OSCILLATORY INTEGRALS AND ON THE HEAT KERNEL OF THE MAGNETIC SCHRODINGER OPERATOR [J].
ERDOS, L .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (02) :541-566
[7]  
Erdos L, 1997, J MATH PHYS, V38, P1289, DOI 10.1063/1.531909
[8]   Weakly coupled bound states of Pauli operators [J].
Frank, Rupert L. ;
Morozov, Sergey ;
Vugalter, Semjon .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :253-271
[9]   Stability results for Harnack inequalities [J].
Grigor'yan, A ;
Saloff-Coste, L .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (03) :825-+
[10]   HEAT KERNEL ON MANIFOLDS WITH ENDS [J].
Grigor'yan, Alexander ;
Saloff-Coste, Laurent .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (05) :1917-1997