A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell

被引:132
|
作者
Ward, JS [1 ]
Ramanathan, K [1 ]
Hasoon, FS [1 ]
Coutts, TJ [1 ]
Keane, J [1 ]
Contreras, MA [1 ]
Moriarty, T [1 ]
Noufi, R [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2002年 / 10卷 / 01期
关键词
Chemical modification - Copper alloys - Current density - Deposition - Energy gap - Evaporation - Mathematical models - Numerical analysis - Polycrystalline materials - Solar concentrators - Thickness measurement;
D O I
10.1002/pip.424
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cu(In, Ga)Se-2 (CIGS) solar cells have been designed for operation tinder mildly concentrated sunlight. The absorber was deposited via a three-stage evaporation process that has consistently yielded high-performance one-sun devices. The device structure reported here was modified by reducing the thickness of the US window/buffer layer to enhance the short-circuit current at the expense of the open-circuit voltage. Operation of the devices tinder optical enhancement leads to significant increases in the voltage and fill factor. At 14 suns, the open-circuit voltage for this device was 736 mV, the fill factor was 80.5%, and the efficiency was 21.5%. This result represents the first report of a polycrystalline thin-film solar cell with an efficiency in excess of 20%.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 50 条
  • [21] Role of planar defects in Cu(In,Ga)Se2 thin-film solar cells
    Cojocaru-Miredin, Oana
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2623 - 2626
  • [22] Optical and recombination losses in thin-film Cu(In,Ga)Se2 solar cells
    Kosyachenko, L. A.
    Mathew, X.
    Paulson, P. D.
    Lytvynenko, V. Ya.
    Maslyanchuk, O. L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 291 - 302
  • [23] Flexible Cu(In,Ga)Se2 thin-film solar cells for space application
    Otte, Karsten
    Makhova, Liudmila
    Braun, Alexander
    Konovalov, Igor
    THIN SOLID FILMS, 2006, 511 : 613 - 622
  • [24] Optical modeling and simulation of thin-film Cu(In,Ga)Se2 solar cells
    Krc, J.
    Campa, A.
    Cernivec, G.
    Malmstrom, J.
    Edoff, M.
    Smole, F.
    Topic, M.
    NUSOD '06: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2006, : 33 - +
  • [25] Photosensitivity of thin-film ZnO/CdS/Cu(In, Ga)Se2 solar cells
    T. Walter
    V. Yu. Rud’
    Yu. V. Rud’
    H. W. Schock
    Semiconductors, 1997, 31 : 681 - 685
  • [26] Flexible, monolithically integrated Cu(In,Ga)Se2 thin-film solar modules
    Herrmann, D
    Kessler, F
    Klemm, U
    Kniese, R
    Friedlmeier, TM
    Spiering, S
    Witte, W
    Powalla, M
    THIN-FILM COMPOUND SEMICONDUCTOR PHOTOVOLTAICS, 2005, 865 : 491 - 498
  • [27] Quantitative luminescence mapping of Cu(In, Ga)Se2 thin-film solar cells
    Delamarre, Amaury
    Paire, Myriam
    Guillemoles, Jean-Francois
    Lombez, Laurent
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1305 - 1312
  • [28] Oxidation as Key Mechanism for Efficient Interface Passivation in Cu(In,Ga)Se2 Thin-Film Solar Cells
    Werner, Florian
    Veith-Wolf, Boris
    Spindler, Conrad
    Barget, Michael R.
    Babbe, Finn
    Guillot, Jerome
    Schmidt, Jan
    Siebentritt, Susanne
    PHYSICAL REVIEW APPLIED, 2020, 13 (05)
  • [29] Microscopic origins of performance losses in highly efficient Cu(In,Ga)Se2 thin-film solar cells
    Krause, Maximilian
    Nikolaeva, Aleksandra
    Maiberg, Matthias
    Jackson, Philip
    Hariskos, Dimitrios
    Witte, Wolfram
    Marquez, Jose A.
    Levcenko, Sergej
    Unold, Thomas
    Scheer, Roland
    Abou-Ras, Daniel
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells
    Vilalta-Clemente, Arantxa
    Raghuwanshi, Mohit
    Duguay, Sebastien
    Castro, Celia
    Cadel, Emmanuel
    Pareige, Philippe
    Jackson, Philip
    Wuerz, Roland
    Hariskos, Dimitrios
    Witte, Wolfram
    APPLIED PHYSICS LETTERS, 2018, 112 (10)