Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames

被引:212
作者
Kim, Hyung-Joon [1 ]
Christopoulos, Constantin [1 ]
机构
[1] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada
来源
JOURNAL OF STRUCTURAL ENGINEERING-ASCE | 2008年 / 134卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1061/(ASCE)0733-9445(2008)134:11(1768)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A new connection for steel moment-resisting frames that incorporates posttensioning elements to provide a self-centering capacity along with friction mechanisms to dissipate energy is proposed and experimentally validated. The restoring force from the posttensioning elements in the connection makes the structure return to its undeformed state, even after experiencing large inelastic drifts. A bolt-prestressed friction mechanism with a frictional interface consisting of stainless steel and new nonasbestos organic break lining pads dissipates seismic input energy as the system undergoes lateral deformations. Cyclic tests were conducted to investigate the efficiency of the proposed friction interface and its performance under loading conditions that are expected during seismic loading. The test results showed that the frictional behavior is stable, repeatable, and predictable, although its friction coefficient is relatively low. Exterior and interior self-centering moment connections equipped with the proposed friction dampers were tested to study their structural behavior under cyclic loading. The results confirmed that friction damped posttensioned self-centering connections are capable of developing similar stiffness and strength characteristics to welded connections. They are also capable of undergoing large deformations with good energy dissipation characteristics, but without introducing inelastic deformations in the beams or the columns and without residual story drifts. Even at the ultimate stage, i.e., beyond the self-centering limit, the proposed connections can be detailed to exhibit a ductile response with the formation of flexural hinges in the beam sections, thus avoiding the sudden loss of strength and stiffness that occurs when the posttensioning elements are overloaded or when the beams buckle under excessive combined axial loads and bending moments.
引用
收藏
页码:1768 / 1779
页数:12
相关论文
共 20 条
[1]  
American Institute of Steel Construction (AISC), 2005, ANSI/AISC 341-05
[2]  
BRUNEAU M, 1998, DUCTILE DESIGN STEEL
[3]  
Carr A. J., 2005, RUAUMOKO INELASTIC D
[4]   Evaluating performance of post-tensioned steel connections with strands and reduced flange plates [J].
Chou, Chung-Che ;
Chen, Jun-Hen ;
Chen, Yu-Chih ;
Tsai, Keh-Chyuan .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2006, 35 (09) :1167-1185
[5]   Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation [J].
Christopoulos, C. ;
Tremblay, R. ;
Kim, H. -J. ;
Lacerte, M. .
JOURNAL OF STRUCTURAL ENGINEERING, 2008, 134 (01) :96-107
[6]   Posttensioned energy dissipating connections for moment-resisting steel frames [J].
Christopoulos, C ;
Filiatrault, A ;
Uang, CM ;
Folz, B .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2002, 128 (09) :1111-1120
[7]  
CHRISTOPOULOS C, 2002, SSRP200206 U CAL DEP
[8]  
*CISC, 2003, HDB STEEL CONSTR
[9]  
COLLINS JH, 2003, SSRP200305 U CAL DEP
[10]   Behavior and design of posttensioned steel frame systems [J].
Garlock, Maria M. ;
Sause, Richard ;
Ricles, James M. .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2007, 133 (03) :389-399