The problem of optimal control of a Chaplygin ball by internal rotors

被引:12
|
作者
Bolotin, Sergey [1 ,2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
关键词
nonholonomic constraint; vaconomic mechanics; optimal control; maximum principle; Hamiltonian; NONINTEGRABLE CONSTRAINTS; SYSTEMS; SPHERE;
D O I
10.1134/S156035471206007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimal control of a Chaplygin ball on a plane by means of 3 internal rotors. Using Pontryagin maximum principle, the equations of extremals are reduced to Hamiltonian equations in group variables. For a spherically symmetric ball, the solutions can be expressed in by elliptic functions.
引用
收藏
页码:559 / 570
页数:12
相关论文
共 50 条
  • [21] Asymptotics of the optimal control in a linear optimal control problem
    Parysheva, Yu. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (02): : 186 - 198
  • [22] Optimal Control of the Irrigation Problem: Characterization of the Solution
    Lopes, Sofia O.
    Pereira, Rui M. S.
    Fontes, Fernando A. C. C.
    de Pinho, M. D. R.
    Machado, Gaspar J.
    CONFERENCE ON ELECTRONICS, TELECOMMUNICATIONS AND COMPUTERS - CETC 2013, 2014, 17 : 699 - 704
  • [23] The individual time trial as an optimal control problem
    de Jong, Jenny
    Fokkink, Robbert
    Olsder, Geert Jan
    Schwab, A. L.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART P-JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY, 2017, 231 (03) : 200 - 206
  • [24] Analysis of the Optimal Relaxed Control to an Optimal Control Problem
    Lou, Hongwei
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 59 (01) : 75 - 97
  • [25] An Optimal Control Approach to the Unit Commitment Problem
    Fontes, F. A. C. C.
    Fontes, D. B. M. M.
    Roque, L. A.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7069 - 7074
  • [26] METHOD FOR SOLVING THE NORM IN AN OPTIMAL CONTROL PROBLEM
    Alioua, Imane
    Bibi, Mohand ouamer
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025,
  • [27] Internal Layer Solution of Singularly Perturbed Optimal Control Problem with Integral Boundary Condition
    Limeng Wu
    Mingkang Ni
    Haibo Lu
    Qualitative Theory of Dynamical Systems, 2018, 17 : 49 - 66
  • [28] Periodic Solutions to the Optimal Control Problem of Rotation of a Rigid Body Using Internal Mass
    A. M. Shmatkov
    Moscow University Mechanics Bulletin, 2020, 75 : 75 - 79
  • [29] Internal Layer Solution of Singularly Perturbed Optimal Control Problem with Integral Boundary Condition
    Wu, Limeng
    Ni, Mingkang
    Lu, Haibo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (01) : 49 - 66
  • [30] Periodic Solutions to the Optimal Control Problem of Rotation of a Rigid Body Using Internal Mass
    Shmatkov, A. M.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2020, 75 (03) : 75 - 79