The problem of optimal control of a Chaplygin ball by internal rotors

被引:12
|
作者
Bolotin, Sergey [1 ,2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
关键词
nonholonomic constraint; vaconomic mechanics; optimal control; maximum principle; Hamiltonian; NONINTEGRABLE CONSTRAINTS; SYSTEMS; SPHERE;
D O I
10.1134/S156035471206007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimal control of a Chaplygin ball on a plane by means of 3 internal rotors. Using Pontryagin maximum principle, the equations of extremals are reduced to Hamiltonian equations in group variables. For a spherically symmetric ball, the solutions can be expressed in by elliptic functions.
引用
收藏
页码:559 / 570
页数:12
相关论文
共 50 条
  • [1] The problem of optimal control of a Chaplygin ball by internal rotors
    Sergey Bolotin
    Regular and Chaotic Dynamics, 2012, 17 : 559 - 570
  • [2] How to control the Chaplygin ball using rotors. II
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2) : 144 - 158
  • [3] How to control the Chaplygin ball using rotors. II
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2013, 18 : 144 - 158
  • [4] The problem of drift and recurrence for the rolling Chaplygin ball
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (06) : 832 - 859
  • [5] The problem of drift and recurrence for the rolling Chaplygin ball
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2013, 18 : 832 - 859
  • [6] How to control Chaplygin’s sphere using rotors
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2012, 17 : 258 - 272
  • [7] How to control Chaplygin's sphere using rotors
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4) : 258 - 272
  • [8] SWITCHING IN TIME-OPTIMAL PROBLEM WITH CONTROL IN A BALL
    Agrachev, Andrei A.
    Biolo, Carolina
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 183 - 200
  • [9] On the Optimal Control of a Rolling Ball Robot Actuated by Internal Point Masses
    Putkaradze, Vakhtang
    Rogers, Stuart
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2020, 142 (05):
  • [10] Maximum principle for optimal control problem with delay
    Wang, Peng
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 842 - 846