MRI Quality Control Algorithm Based on Image Analysis Using Convolutional and Recurrent Neural Networks

被引:1
作者
Shoroshov, Grigorii [1 ]
Senyukova, Olga [1 ]
Semenov, Dmitry [2 ]
Sharova, Daria [2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[2] Ctr Diagnost & Telemed, Innovat Technol Dept, Moscow, Russia
来源
2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2022年
关键词
MRI Quality Control; Deep Learning; Brain MRI; Convolutional Neural Networks; LSTM; ARTIFACTS;
D O I
10.1109/CBMS55023.2022.00080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
MRI quality control plays a significant role in ensuring safety and quality of examinations. Most of the work in the area is devoted to the development of no-reference quality metrics. Some recent works use 2D or 3D convolutional neural networks. For this study, we collected a dataset of 363 clinical MRI sequences with known results of quality control as well as 1295 clinical MRI sequences without known results of quality control. We propose a method based on neural networks that takes into account the three-dimensional context through the use of bidirectional LSTM, as well as a pre-training method based on a prediction of no-reference quality metrics using EfficientNet convolutional neural network that allows the use of unlabeled data. The proposed method makes it possible to predict the result of quality control with ROC-AUC of almost 0.94.
引用
收藏
页码:412 / 415
页数:4
相关论文
共 21 条
  • [1] Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion
    Atkinson, D
    Hill, DLG
    Stoyle, PNR
    Summers, PE
    Keevil, SF
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 903 - 910
  • [2] Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse
    Bottani, Simona
    Burgos, Ninon
    Maire, Aurelien
    Wild, Adam
    Stroer, Sebastian
    Dormont, Didier
    Colliot, Olivier
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 75
  • [3] Artifacts in magnetic resonance imaging: how it can really affect diagnostic image quality and confuse clinical diagnosis?
    Budrys, Tomas
    Veikutis, Vincentas
    Lukosevicius, Saulius
    Gleizniene, Rymante
    Monastyreckiene, Egle
    Kulakiene, Ilona
    [J]. JOURNAL OF VIBROENGINEERING, 2018, 20 (02) : 1202 - 1213
  • [4] Cortical surface-based analysis - I. Segmentation and surface reconstruction
    Dale, AM
    Fischl, B
    Sereno, MI
    [J]. NEUROIMAGE, 1999, 9 (02) : 179 - 194
  • [5] MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites
    Esteban, Oscar
    Birman, Daniel
    Schaer, Marie
    Koyejo, Oluwasanmi O.
    Poldrack, Russell A.
    Gorgolewski, Krzysztof J.
    [J]. PLOS ONE, 2017, 12 (09):
  • [6] Automated Multiclass Artifact Detection in Diffusion MRI Volumes via 3D Residual Squeeze-and-Excitation Convolutional Neural Networks
    Ettehadi, Nabil
    Kashyap, Pratik
    Zhang, Xuzhe
    Wang, Yun
    Semanek, David
    Desai, Karan
    Guo, Jia
    Posner, Jonathan
    Laine, Andrew F.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [7] Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters
    Ganzetti, Marco
    Wenderoth, Nicole
    Mantini, Dante
    [J]. FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [8] Variations in structural MRI quality significantly impact commonly used measures of brain anatomy
    Gilmore A.D.
    Buser N.J.
    Hanson J.L.
    [J]. Brain Informatics, 2021, 8 (1)
  • [9] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
  • [10] MRI quality assurance using the ACR phantom in a multi-unit imaging center
    Ihalainen, Toni M.
    Lonnroth, Nadja T.
    Peltonen, Juha I.
    Uusi-Simola, Jouni K.
    Timonen, Marjut H.
    Kuusela, Linda J.
    Savolainen, Sauli E.
    Sipila, Outi E.
    [J]. ACTA ONCOLOGICA, 2011, 50 (06) : 966 - 972