Generalized congruence properties of the restricted partition function p(n,m)

被引:6
作者
Kronholm, Brandt [1 ]
机构
[1] Whittier Coll, Whittier, CA 90608 USA
关键词
Partition; Congruence; Generating function; Ramanujan; MODULO-M; MINIMUM PERIODS; PERIODICITIES;
D O I
10.1007/s11139-012-9382-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ramanujan-type congruences for the unrestricted partition function p(n) are well known and have been studied in great detail. The existence of Ramanujan-type congruences are virtually unknown for p(n,m), the closely related restricted partition function that enumerates the number of partitions of n into exactly m parts. Let a"" be any odd prime. In this paper we establish explicit Ramanujan-type congruences for p(n,a"") modulo any power of that prime a"" (alpha) . In addition, we establish general congruence relations for p(n,a"") modulo a"" (alpha) for any n.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 17 条
[1]   Distribution of the partition function module composite integers M [J].
Ahlgren, S .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :795-803
[2]  
Andrews G.E., 1976, THEORY PARTITIONS EN
[3]  
Atkin A. O. L., 1969, P S PURE MATH, VXII, P33
[4]   PROOF OF A CONJECTURE OF RAMANUJAN [J].
ATKIN, AOL .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :14-&
[5]  
Gupta H., 1970, J RES NATL BUREAU B, V74B
[6]  
Gupta H., 1958, ROYAL SOC MATH TABLE, V4
[7]   On congruence properties of p(n, m) [J].
Kronholm, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) :2891-2895
[8]  
Kronholm B., 2007, INTEGERS, V7
[9]   PERIODICITIES OF A CLASS OF INFINITE INTEGER SEQUENCES MODULO-M [J].
KWONG, YHH .
JOURNAL OF NUMBER THEORY, 1989, 31 (01) :64-79
[10]  
KWONG YHH, 1989, UTILITAS MATHEMATICA, V35, P3