Deducing thick plate solutions from classical thin plate solutions

被引:0
作者
Wang, CM [1 ]
机构
[1] Natl Univ Singapore, Dept Civil Engn, Singapore 119260, Singapore
来源
STRUCTURAL ENGINEERING AND MECHANICS, VOLS 1 AND 2 | 1999年
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper reviews the authors' work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 23 条
  • [1] Hencky H, 1947, Ingenieur-Arch, V16, P72
  • [2] Exact solutions for axisymmetric bending of continuous annular plates
    Karunasena, W
    Wang, CM
    Kitipornchai, S
    Xiang, Y
    [J]. COMPUTERS & STRUCTURES, 1997, 63 (03) : 455 - 464
  • [3] Kirchhoff G., 1850, J. Reine Angew. Math. (Crelles J.), V40, P51, DOI DOI 10.1515/CRLL.1850.40.51
  • [4] MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31
  • [5] Reddy JN, 1997, COMMUN NUMER METH EN, V13, P495, DOI 10.1002/(SICI)1099-0887(199706)13:6<495::AID-CNM82>3.0.CO
  • [6] 2-9
  • [7] A SIMPLE HIGHER-ORDER THEORY FOR LAMINATED COMPOSITE PLATES
    REDDY, JN
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (04): : 745 - 752
  • [8] REISSNER E, 1945, J APPL MECH-T ASME, V12, pA69
  • [9] Reissner E., 1944, J MATH PHYS, V23, P184, DOI [10.1002/sapm1944231184, DOI 10.1002/SAPM1944231184]
  • [10] SZILARD R, 1974, THEORY ANAL PLATES