Multiphysics Simulation & Design of Silicon Quantum Dot Qubit Devices

被引:20
作者
Mohiyaddin, F. A. [1 ]
Simion, G. [1 ]
Stuyck, N. I. Dumoulin [1 ,2 ]
Li, R. [1 ]
Ciubotaru, F. [1 ]
Eneman, G. [1 ]
Bufler, F. M. [1 ,3 ]
Kubicek, S. [1 ]
Jussot, J. [1 ]
Chan, B. T. [1 ]
Ivanov, Ts. [1 ]
Spessot, A. [1 ]
Matagne, P. [1 ]
Lee, J. [1 ]
Govoreanu, B. [1 ]
Radu, I. P. [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Mat Engn MTM, Kasteelpk Arenberg 44, B-3001 Leuven, Belgium
[3] Swiss Fed Inst Technol, Inst Integrierte Syst, Gloriastr 35, CH-8092 Zurich, Switzerland
来源
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2019年
关键词
SPIN;
D O I
10.1109/iedm19573.2019.8993541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we combine multiphysics simulation methods to assemble a comprehensive design methodology for silicon qubit devices. Key device parameters are summarized by modeling device electrostatics, stress, micro-magnetics, band-structure and spin dynamics. Based on the models, we infer that highly confined single electron qubits in quantum dots, with large orbital energy separations, can be induced in Si-MOS structures with thin (t(OX) < 20 nm) gate oxides. We further advocate that poly-silicon gate material, in conjunction with small barrier gate widths (b < 30 nm), will reduce the impact of strain on qubit readout and two-qubit gate-operations. We optimized a micromagnet design to provide fast single-qubit gate times (similar to 100 ns), with minimal dephasing field gradients. Finally, we estimate that the exchange coupling between qubits is tunable by over 4 orders of magnitude, for two-qubit operations.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 2018, OOMMF US GUID V1 2
[2]  
Elzerman JM, 2004, NATURE, V430, P431, DOI [10.1038/nature02693, 10.1039/nature02693]
[3]   Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability [J].
Ferdous, Rifat ;
Chan, Kok W. ;
Veldhorst, Menno ;
Hwang, J. C. C. ;
Yang, C. H. ;
Sahasrabudhe, Harshad ;
Klimeck, Gerhard ;
Morello, Andrea ;
Dzurak, Andrew S. ;
Rahman, Rajib .
PHYSICAL REVIEW B, 2018, 97 (24)
[4]   Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout [J].
Fogarty, M. A. ;
Chan, K. W. ;
Hensen, B. ;
Huang, W. ;
Tanttu, T. ;
Yang, C. H. ;
Laucht, A. ;
Veldhorst, M. ;
Hudson, F. E. ;
Itoh, K. M. ;
Culcer, D. ;
Ladd, T. D. ;
Morello, A. ;
Dzurak, A. S. .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Govoreanu B., 2019, P SIL NAN WORKSH
[6]  
Mohiyaddin F. A., 2019, P IITC
[7]  
Pillarisetty R., 2018, P IEDM, P6
[8]  
Raphael, 2018, SENTAURUS BAND STRUC
[9]   Electron g-factor of valley states in realistic silicon quantum dots [J].
Ruskov, Rusko ;
Veldhorst, Menno ;
Dzurak, Andrew S. ;
Tahan, Charles .
PHYSICAL REVIEW B, 2018, 98 (24)
[10]   Formation of strain-induced quantum dots in gated semiconductor nanostructures [J].
Thorbeck, Ted ;
Zimmerman, Neil M. .
AIP ADVANCES, 2015, 5 (08)