QM/MM Studies into the H2O2-Dependent Activity of Lytic Polysaccharide Monooxygenases: Evidence for the Formation of a Caged Hydroxyl Radical Intermediate

被引:118
|
作者
Wang, Binju [1 ,2 ]
Johnston, Esther M. [3 ]
Li, Pengfei [4 ,5 ]
Shaik, Sason [6 ]
Davies, Gideon J. [7 ]
Walton, Paul H. [3 ]
Rovira, Carme [1 ,2 ,8 ]
机构
[1] Univ Barcelona, Dept Quim Inorgan & Organ, Seccio Quim Organ, Marti & Franques 1, E-08028 Barcelona, Spain
[2] Univ Barcelona, IQTCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[3] Univ York, Dept Chem, Heslington YO10 5DD, England
[4] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[5] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
[6] Hebrew Univ Jerusalem, Inst Chem, Givat Ram Campus, IL-91904 Jerusalem, Israel
[7] Univ York, Dept Chem, York Struct Biol Lab, Heslington YO10 5DD, England
[8] ICREA, Passeig Lluis Co 23, Barcelona 08020, Spain
来源
ACS CATALYSIS | 2018年 / 8卷 / 02期
基金
英国生物技术与生命科学研究理事会;
关键词
LPMO; H2O2; activation; QM/MM calculations; HO center dot radical; cluster-continuum; hydrolysis; CLUSTER-CONTINUUM MODEL; CELLULOSE DEGRADATION; COMBINED QUANTUM; CELLOBIOSE DEHYDROGENASE; OXIDATIVE CLEAVAGE; NEUROSPORA-CRASSA; STRUCTURAL BASIS; WATER-MOLECULES; ENZYMES; MECHANISM;
D O I
10.1021/acscatal.7b03888
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are promising enzymes for the conversion of lignocellulosic biomass into biofuels and biomaterials. Classically considered oxygenases, recent work suggests that H2O2 can, under certain circumstances, also be a potential substrate. Here we present a detailed mechanism of the activation of H2O2 by a C4-acting LPMO using small-model DFT and QM/MM calculations. We show that there is an efficient mechanism to break the O-O bond of H2O2 with a low barrier of 5.8 kcal/mol, via a one-electron transfer from the LPMO-Cu(I) site to form an HO center dot radical, stabilized by hydrogen bonding interactions. Our QM/MM calculations further show that the H-bonding machinery of the enzyme directs the HO center dot radical to abstract a hydrogen atom from the Cu(II) OH unit rather from substrate in what is essentially a caged-radical reaction, thereby forming a Cu(II)-oxyl species. The Cu(II)-oxyl species then exclusively oxidizes the C4-H bond due to the suitable position of the substrate. Our calculations also suggest that the C4-hydroxylated intermediate can be efficiently hydrolyzed in water, and this process does not require enzymatic catalysis.
引用
收藏
页码:1346 / 1351
页数:6
相关论文
共 50 条
  • [1] The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay
    Filandr, Frantisek
    Man, Petr
    Halada, Petr
    Chang, Hucheng
    Ludwig, Roland
    Kracher, Daniel
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [2] The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay
    Frantisek Filandr
    Petr Man
    Petr Halada
    Hucheng Chang
    Roland Ludwig
    Daniel Kracher
    Biotechnology for Biofuels, 13
  • [3] Activation of O2 and H2O2 by Lytic Polysaccharide Monooxygenases
    Wang, Binju
    Wang, Zhanfeng
    Davies, Gideon J.
    Walton, Paul H.
    Rovira, Carme
    ACS CATALYSIS, 2020, 10 (21) : 12760 - 12769
  • [4] Probing the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter: Insights into the H2O2-Dependent Pathway
    Cheng, Kai
    Li, Hang
    Laszakovits, Juliana R.
    Sharpless, Charles M.
    Rosario-Ortiz, Fernando
    Mckay, Garrett
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (04) : 2245 - 2256
  • [5] Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases
    Hedison, Tobias M.
    Breslmayr, Erik
    Shanmugam, Muralidharan
    Karnpakdee, Kwankao
    Heyes, Derren J.
    Green, Anthony P.
    Ludwig, Roland
    Scrutton, Nigel S.
    Kracher, Daniel
    FEBS JOURNAL, 2021, 288 (13) : 4115 - 4128
  • [6] Formation of a Copper(II)-Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2
    Paradisi, Alessandro
    Johnston, Esther M.
    Tovborg, Morten
    Nicoll, Callum R.
    Ciano, Luisa
    Dowle, Adam
    McMaster, Jonathan
    Hancock, Y.
    Davies, Gideon J.
    Walton, Paul H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (46) : 18585 - 18599
  • [7] Theoretical study of the in situ formation of H2O2 by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant
    Wang, Zhanfeng
    Fu, Xiaodi
    Diao, Wenwen
    Wu, Yao
    Rovira, Carme
    Wang, Binju
    CHEMICAL SCIENCE, 2025, 16 (07) : 3173 - 3186
  • [8] H2O2 in Liquid Fractions of Hydrothermally Pretreated Biomasses: Implications of Lytic Polysaccharide Monooxygenases
    Kont, Riin
    Pihlajaniemi, Ville
    Niemela, Klaus
    Kuusk, Silja
    Marjamaa, Kaisa
    Valjamae, Priit
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (48) : 16220 - 16231
  • [9] Scission of Glucosidic Bonds by a Lentinus similis Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H2O2 while the Oxidation of Saccharide Products Depends on O2
    Brander, Soren
    Tokin, Radina
    Ipsen, Johan O.
    Jensen, Poul Erik
    Hernandez-Rollan, Cristina
    Norholm, Morten H. H.
    Lo Leggio, Leila
    Dupree, Paul
    Johansen, Katja S.
    ACS CATALYSIS, 2021, 11 (22) : 13848 - 13859
  • [10] Autocatalytic formation of green heme:: Evidence for H2O2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase
    Metcalfe, CL
    Ott, M
    Patel, N
    Singh, K
    Mistry, SC
    Goff, HM
    Raven, EL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (49) : 16242 - 16248