Lagrangian support vector machines

被引:418
作者
Mangasaian, OL
Musicant, DR
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Carleton Coll, Dept Math & Comp Sci, Northfield, MN 55057 USA
关键词
D O I
10.1162/15324430152748218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An implicit Lagrangian for the dual of a simple reformulation of the standard quadratic program of a linear support vector machine is proposed. This leads to the minimization of an unconstrained differentiable convex function in a space of dimensionality equal to the number of classified points. This problem is solvable by an extremely simple linearly convergent Lagrangian support vector machine (LSVM) algorithm. LSVM requires the inversion at the outset of a single matrix of the order of the much smaller dimensionality of the original input space phis one. The full algorithm is given in this paper in 11 lines of MATLAB code without any special optimization tools such as linear or quadratic programming solvers. This LSVM code can be used "as is" to solve classification problems with millions of points. For example, 2 million points in 10 dimensional input space were classified by a linear surface in 82 minutes on a Pentium III 500 MHz notebook with 384 megabytes of memory (and additional swap space), and in 7 minutes on a 250 MHz UltraSPARC 11 processor with 2 gigabytes of memory. Other standard classification test problems were also solved. Nonlinear kernel classification can also be solved by LSVM. Although it does not scale up to very large problems, it can handle any positive semidefinite kernel and is guaranteed to converge. A short MATLAB code is also given for nonlinear kernels and tested on a number of problems.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 50 条
  • [21] Nested Support Vector Machines
    Lee, Gyemin
    Scott, Clayton
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1648 - 1660
  • [22] Sex with Support Vector Machines
    Moghaddam, B
    Yang, MH
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 960 - 966
  • [23] Fβ support vector machines
    Callut, K
    Dupont, P
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1443 - 1448
  • [24] Minimax support vector machines
    Davenport, Mark A.
    Baraniuk, Richard G.
    Scott, Clayton D.
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 630 - +
  • [25] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [26] Sparseness of support vector machines
    Steinwart, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (06) : 1071 - 1105
  • [27] Faster Support Vector Machines
    Schlag S.
    Schmitt M.
    Schulz C.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [28] An introduction to support vector machines
    Schölkopf, B
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 3 - 17
  • [29] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [30] Field Support Vector Machines
    Huang, Kaizhu
    Jiang, Haochuan
    Zhang, Xu-Yao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2017, 1 (06): : 454 - 463