Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis

被引:110
作者
Gao, Zhiyong [1 ]
Wen, Chi-Kuang [3 ]
Binder, Brad M. [2 ]
Chen, Yi-Feng [1 ]
Chang, Jianhong [3 ]
Chiang, Yi-Hsuan [1 ]
Ill, Robert J. Kerris [1 ]
Chang, Caren [3 ]
Schaller, G. Eric [1 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[2] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA
[3] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
关键词
D O I
10.1074/jbc.M800641200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The gaseous hormone ethylene is perceived in Arabidopsis by a five member receptor family that consists of the subfamily 1 receptors ETR1 and ERS1 and the subfamily 2 receptors ETR2, ERS2, and EIN4. Previous work has demonstrated that the basic functional unit for the ethylene receptor, ETR1, is a disulfide-linked homodimer. We demonstrate here that ethylene receptors isolated from Arabidopsis also interact with each other through noncovalent interactions. Evidence that ETR1 associates with other ethylene receptors was obtained by co-purification of ETR1 with tagged versions of ERS1, ETR2, ERS2, and EIN4 from Arabidopsis membrane extracts. ETR1 preferentially associated with the subfamily 2 receptors compared with the subfamily 1 receptor ERS1, but ethylene treatment affected the interactions and relative composition of the receptor complexes. When transgenically expressed in yeast, ETR1 and ERS2 can form disulfide-linked heterodimers. In plant extracts, however, the association of ETR1 and ERS2 can be largely disrupted by treatment with SDS, supporting a higher order noncovalent interaction between the receptors. Yeast two-hybrid analysis demonstrated that the receptor GAF domains are capable of mediating heteromeric receptor interactions. Kinetic analysis of ethylene-insensitive mutants of ETR1 is consistent with their dominance being due in part to an ability to associate with other ethylene receptors. These data suggest that the ethylene receptors exist in plants as clusters in a manner potentially analogous to that found with the histidine kinase-linked chemoreceptors of bacteria and that interactions among receptors contribute to ethylene signal output.
引用
收藏
页码:23801 / 23810
页数:10
相关论文
共 49 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   The GAF domain: an evolutionary link between diverse phototransducing proteins [J].
Aravind, L ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (12) :458-459
[3]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[4]   Signal transduction in bacterial chemotaxis [J].
Baker, MD ;
Wolanin, PM ;
Stock, JB .
BIOESSAYS, 2006, 28 (01) :9-22
[5]   Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis [J].
Binder, BM ;
O'Malley, RC ;
Wang, WY ;
Moore, JM ;
Parks, BM ;
Spalding, EP ;
Bleecker, AB .
PLANT PHYSIOLOGY, 2004, 136 (02) :2913-2920
[6]   Short-term growth responses to ethylene in arabidopsis seedlings are EIN3/EIL1 independent [J].
Binder, BM ;
Mortimore, LA ;
Stepanova, AN ;
Ecker, JR ;
Bleecker, AB .
PLANT PHYSIOLOGY, 2004, 136 (02) :2921-2927
[7]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[8]   Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis [J].
Cancel, JD ;
Larsen, PB .
PLANT PHYSIOLOGY, 2002, 129 (04) :1557-1567
[9]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[10]   ANALYSIS OF ETHYLENE SIGNAL-TRANSDUCTION KINETICS ASSOCIATED WITH SEEDLING-GROWTH RESPONSE AND CHITINASE INDUCTION IN WILD-TYPE AND MUTANT ARABIDOPSIS [J].
CHEN, QHG ;
BLEECKER, AB .
PLANT PHYSIOLOGY, 1995, 108 (02) :597-607