Relative humidity control in polymer electrolyte membrane fuel cells without extra humidification

被引:35
作者
Riascos, Luis A. M. [1 ]
机构
[1] Fed Univ ABC, BR-09210170 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
polymer electrolyte membrane fuel cells; relative humidity control;
D O I
10.1016/j.jpowsour.2008.06.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of polymer electrolyte membrane fuel cells is highly influenced by the water content in the membrane. To prevent the membrane from drying, several researchers have proposed extra humidification on the input reactants. But in some applications, the extra size and weight of the humidifier should be avoided. In this research a control technique, which maintains the relative humidity on saturated conditions, is implemented by adjusting the air stoichiometry; the effects of drying of membrane and flooding of electrodes are considered, as well. For initial analysis, a mathematical model reveals the relationship among variables that can be difficult to monitor in a real machine. Also prediction can be tested optimizing time and resources. For instance, the effects of temperature and humidity can be analyzed separately. For experimental validation, tests in a fault tolerant fuel cell are conducted. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 211
页数:8
相关论文
共 26 条
[1]   Analysis of the water and thermal management in proton exchange membrane fuel cell systems [J].
Bao, Cheng ;
Ouyang, Minggao ;
Yi, Baolian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (08) :1040-1057
[2]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772
[3]   Guidelines for stable operation of a polymer electrolyte fuel cell with self-humidifying membrane electrolyte assembly [J].
Chan, S. H. ;
Han, M. ;
Jiang, S. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (05) :B486-B493
[4]   Flow distribution in proton exchange membrane fuel cell stacks [J].
Chang, Paul A. C. ;
St-Pierre, Jean ;
Stumper, Juergen ;
Wetton, Brian .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :340-355
[5]   Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells [J].
Corrêa, JM ;
Farret, FA ;
Popov, VA ;
Simoes, MG .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (01) :211-218
[6]   An electrochemical-based fuel-cell model suitable for electrical engineering automation approach [J].
Corrêa, JM ;
Farret, FA ;
Canha, LN ;
Simoes, MG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (05) :1103-1112
[7]   Model based PEM fuel cell state-of-health monitoring via ac impedance measurements [J].
Fouquet, N. ;
Doulet, C. ;
Nouillant, C. ;
Dauphin-Tanguy, G. ;
Ould-Bouamama, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :905-913
[8]   In-plane effects in large-scale PEMFCs -: Model formulation and validation [J].
Freunberger, SA ;
Santis, M ;
Schneider, IA ;
Wokaun, A ;
Büchi, FN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A396-A405
[9]  
Freunberger SA, 2006, J ELECTROCHEM SOC, V153, pA909, DOI 10.1149/1.2185282
[10]   Liquid water formation and transport in the PEFC anode [J].
Ge, Shanhai ;
Wang, Chao-Yang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :B998-B1005