Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions

被引:17
作者
Agarwal, Praveen [1 ]
Rogosin, Sergei V. [2 ]
Trujillo, Juan J. [3 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Belarusian State Univ, Dept Econ, Minsk 220030, BELARUS
[3] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2015年 / 125卷 / 03期
关键词
Marichev-Saigo-Maeda fractional integral operators; generalized multi-index Mittag-Leffler functions; Appell functions; generalized Wright function;
D O I
10.1007/s12044-015-0243-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain formulas of fractional integration (of Marichev- Saigo-Maeda type) of the generalized multi-index Mittag-Leffler functions E (gamma,kappa) [(alpha (j) ,beta (j) ) (m) ; z] generalizing 2m-parametric Mittag-Leffler functions studied by Saxena and Nishimoto (J. Fract. Calc. 37 (2010] 43-52). Some interesting special cases of our main results are considered too.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 54 条
[1]  
Agarwal P, P NAT ACA A IN PRESS
[2]  
Al-Bassam M.-A., 1995, J FRACT CALCUL, V7, P69
[3]  
[Anonymous], 2006, Fract. Calc. Appl. Anal.
[4]  
[Anonymous], J INDIAN ACAD MATH
[5]  
[Anonymous], 2002, J. Integral Equ. Appl., DOI [10.1216/jiea/1181074929, DOI 10.1216/JIEA/1181074929]
[6]  
[Anonymous], 2004, H TRANSFORMS THEORY
[7]  
[Anonymous], 1993, An Introduction to The Fractional Calculus and Fractional Differential Equations
[8]  
[Anonymous], 2002, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Aribitrary Order
[9]  
[Anonymous], 1979, RES NOTES MATH
[10]  
[Anonymous], 2008, AUTOMATIC CONTROL RO