Integral technique for evaluation and optimization of Ni (II) ions adsorption onto regenerated cellulose using response surface methodology

被引:20
|
作者
Davarnejad, Reza [1 ]
Moraveji, Mostafa Keshavarz [2 ]
Havaie, Marjan [1 ]
机构
[1] Arak Univ, Fac Engn, Dept Chem Engn, Arak 3945538138, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Dept Chem Engn, 424 Hafez Ave, Tehran 158754413, Iran
关键词
Ni (II) adsorption; Optimization; Response surface methodology; Tissue paper; HEAVY-METAL IONS; WASTE-WATER; CARBON NANOTUBES; ACTIVATED CARBON; REMOVAL; BIOSORPTION; NICKEL; EQUILIBRIUM; WASTEWATERS; MECHANISM;
D O I
10.1016/j.arabjc.2015.05.022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The removal efficiency of Ni (II) ions from aqueous solution using regenerated cellulose was studied. The effects of solution pH, time, initial metal concentration and adsorbent dosage on metal adsorption efficiency were investigated. Response surface methodology (RSM) was applied to predict the behavior of the system. Based on the developed model, pH was found to be the main factor which had the highest influence on Ni (II) removal efficiency. It was observed that an increase in the pH from 3.75 to 7.25 resulted in a 51.6% increase in Ni (II) removal efficiency. Additionally, the time and adsorbent dosage were found to have positive influence on metal removal efficiency while Ni (II) removal efficiency reduced with initial metal concentration. The optimization of the integral main factors was performed. The suggested optimum values for pH, time, initial metal concentration, adsorbent dosage and Ni (II) removal efficiency were 6.4, 175.27 min, 32.5 ppm, 0.4 g and 98%, respectively. (C) 2015 The Authors. Production and hosting by Elsevier B. V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:370 / 379
页数:10
相关论文
共 50 条