Hidden quantum groups symmetry of super-renormalizable gravity

被引:25
作者
Alexander, Stephon [1 ,2 ,4 ]
Marciano, Antonino [1 ,2 ]
Modesto, Leonardo [3 ]
机构
[1] Haverford Coll, Dept Phys, Koshland Integrated Nat Sci Ctr, Haverford, PA 19041 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 12期
关键词
NONCOMMUTATIVE GEOMETRY; BLACK-HOLE; SPACE-TIME; MODEL; QFT;
D O I
10.1103/PhysRevD.85.124030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we consider the relation between the super-renormalizable theories of quantum gravity studied by Biswas, Gerwick, Koivisto, and Mazumdar [Phys. Rev. Lett. 108, 031101 (2012)] and Modesto [arXiv: 1107.2403; arXiv: 1202.0008] and an underlying noncommutativity of space-time. For one particular super-renormalizable theory, we show that at the linear level (quadratic in the Lagrangian) the propagator of the theory is the same one we obtain starting from a theory of gravity endowed with theta-Poincare quantum groups of symmetry. Such a theory is over the so-called theta-Minkowski noncommutative space-time. We shed new light on this link and show that, among the theories considered in these references, there exists only one nonlocal and Lorentz invariant super-renormalizable theory of quantum gravity that can be described in terms of a quantum-group symmetry structure. We also emphasize contact with preexistent works in the literature and discuss preservation of the equivalence principle in our framework.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Generalizing the Noether theorem for Hopf-algebra spacetime symmetries [J].
Agostini, Alessandra ;
Amelino-Camelia, Giovanni ;
Arzano, Michele ;
Mariano, Antonino ;
Tacchi, Ruggero Altair .
MODERN PHYSICS LETTERS A, 2007, 22 (24) :1779-1786
[2]  
Amelino-Camelia G, 2007, PROG THEOR PHYS SUPP, P65, DOI 10.1143/PTPS.171.65
[3]   Noether analysis of the twisted Hopf symmetries of canonical noncommutative spacetimes [J].
Amelino-Camelia, Giovanni ;
Briscese, Fabio ;
Gubitosi, Giulia ;
Marciano, Antonino ;
Martinetti, Pierre ;
Mercati, Flavio .
PHYSICAL REVIEW D, 2008, 78 (02)
[4]  
[Anonymous], ARXIV11072403
[5]  
[Anonymous], 1992, Effective action in quantum gravity
[6]  
[Anonymous], ARXIV10031998
[7]  
[Anonymous], ARXIV12020008
[8]   Non-commutative geometry inspired charged black holes [J].
Ansoldi, Stefano ;
Nicolini, Piero ;
Smailagic, Anais ;
Spallucci, Euro .
PHYSICS LETTERS B, 2007, 645 (2-3) :261-266
[9]  
Arkani-Hamed N., ARXIVHEPTH0209227V1
[10]   Maximal extension of the Schwarzschild space-time inspired by noncommutative geometry [J].
Arraut, I. ;
Batic, D. ;
Nowakowski, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)