Artificial Intelligence in Diabetic Retinopathy: Insights from a Meta-Analysis of Deep Learning

被引:8
作者
Poly, Tahmina Nasrin [1 ,2 ]
Islam, Md Mohaimenul [1 ,2 ]
Yang, Hsuan Chia [2 ]
Nguyen, Phung-Anh [2 ]
Wu, Chieh Chen [1 ,2 ]
Li, Yu-Chuan [1 ,2 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei, Taiwan
[2] Int Ctr Hlth Informat & Technol ICHIT, Taipei, Taiwan
来源
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL | 2019年 / 264卷
关键词
artificial intelligence; deep learning; diabetic retinopathy; VALIDATION; SYSTEM;
D O I
10.3233/SHTI190532
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The demand for AI to improve patients outcome has been increased,- we, therefore, aim to establish the diagnostic values of AI in diabetic retinopathy by pooling the published studies of deep learning on this subject. A total of eight studies included which evaluated deep learning in a total of 706,922 retinal images. The overall pooled area under receiver operating curve (AUROC) was 98.93% (95%CI:98.37%-99.49%). However, the overall pooled sensitivity and specificity for detecting referable diabetic retinopathy (RDR) was 74% (95% CI: 73%-74%), and 95% (95% CI: 95%-95%). The findings of this study show that deep learning had high sensitivity and specificity for identifying diabetic retinopathy.
引用
收藏
页码:1556 / 1557
页数:2
相关论文
共 10 条
[1]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[2]   Machine Learning for Medical Imaging1 [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Akkus, Zeynettin ;
Kline, Timothy L. .
RADIOGRAPHICS, 2017, 37 (02) :505-515
[3]  
Garcia G., 2017, INT C ART NEUR NETW
[4]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969
[5]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[6]  
Helmchen LA, 2014, AM J MANAG CARE, V20, peSP48
[7]   Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy [J].
Lin, Gen-Min ;
Chen, Mei-Juan ;
Yeh, Chia-Hung ;
Lin, Yu-Yang ;
Kuo, Heng-Yu ;
Lin, Min-Hui ;
Chen, Ming-Chin ;
Lin, Shinfeng D. ;
Gao, Ying ;
Ran, Anran ;
Cheung, Carol Y. .
JOURNAL OF OPHTHALMOLOGY, 2018, 2018
[8]   Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy [J].
Mansour, Romany F. .
BIOMEDICAL ENGINEERING LETTERS, 2018, 8 (01) :41-57
[9]   Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes [J].
Ting, Daniel Shu Wei ;
Cheung, Carol Yim-Lui ;
Lim, Gilbert ;
Tan, Gavin Siew Wei ;
Quang, Nguyen D. ;
Gan, Alfred ;
Hamzah, Haslina ;
Garcia-Franco, Renata ;
Yeo, Ian Yew San ;
Lee, Shu Yen ;
Wong, Edmund Yick Mun ;
Sabanayagam, Charumathi ;
Baskaran, Mani ;
Ibrahim, Farah ;
Tan, Ngiap Chuan ;
Finkelstein, Eric A. ;
Lamoureux, Ecosse L. ;
Wong, Ian Y. ;
Bressler, Neil M. ;
Sivaprasad, Sobha ;
Varma, Rohit ;
Jonas, Jost B. ;
He, Ming Guang ;
Cheng, Ching-Yu ;
Cheung, Gemmy Chui Ming ;
Aung, Tin ;
Hsu, Wynne ;
Lee, Mong Li ;
Wong, Tien Yin .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2211-2223
[10]   Deep convolutional neural networks for diabetic retinopathy detection by image classification [J].
Wan, Shaohua ;
Liang, Yan ;
Zhang, Yin .
COMPUTERS & ELECTRICAL ENGINEERING, 2018, 72 :274-282