Quantifying stability of quantum statistical ensembles

被引:0
作者
Hahn, Walter [1 ,2 ,3 ]
Fine, Boris V. [1 ,2 ]
机构
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[2] Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany
[3] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2018年
基金
俄罗斯科学基金会;
关键词
quantum thermalization; spin chains; ladders and planes; STATES;
D O I
10.1088/1742-5468/aaa799
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate different measures of stability of quantum statistical ensembles with respect to local measurements. We call a quantum statistical ensemble 'stable' if a small number of local measurements cannot significantly modify the total-energy distribution representing the ensemble. First, we numerically calculate the evolution of the stability measure introduced in our previous work Hahn and Fine (2016 Phys. Rev. E 94 062106) for an ensemble representing a mixture of two canonical ensembles with very different temperatures in a periodic chain of interacting spins-1/2. Second, we propose other possible stability measures and discuss their advantages and disadvantages. We also show that, for small system sizes available to numerical simulations of local measurements, finite-size effects are rather pronounced.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] On thermalization in classical scalar field theory
    Aarts, G
    Bonini, GF
    Wetterich, C
    [J]. NUCLEAR PHYSICS B, 2000, 587 (1-3) : 403 - 418
  • [2] [Anonymous], 2003, TOPICS OPTIMAL TRANS
  • [3] Negative Absolute Temperature for Motional Degrees of Freedom
    Braun, S.
    Ronzheimer, J. P.
    Schreiber, M.
    Hodgman, S. S.
    Rom, T.
    Bloch, I.
    Schneider, U.
    [J]. SCIENCE, 2013, 339 (6115) : 52 - 55
  • [4] The quantum canonical ensemble
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6502 - 6508
  • [5] Chaotic properties of spin lattices near second-order phase transitions
    de Wijn, A. S.
    Hess, B.
    Fine, B. V.
    [J]. PHYSICAL REVIEW E, 2015, 92 (06):
  • [6] Dunkel J, 2014, NAT PHYS, V10, P67, DOI [10.1038/nphys2815, 10.1038/NPHYS2815]
  • [7] Regression Relation for Pure Quantum States and Its Implications for Efficient Computing
    Elsayed, Tarek A.
    Fine, Boris V.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (07)
  • [8] An alternative to the conventional micro-canonical ensemble
    Fine, Boris V.
    Hantschel, Frank
    [J]. PHYSICA SCRIPTA, 2012, T151
  • [9] Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates
    Fine, Boris V.
    [J]. PHYSICAL REVIEW E, 2009, 80 (05):
  • [10] Universal long-time relaxation on lattices of classical spins: Markovian behavior on non-Markovian timescales
    Fine, BV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) : 319 - 327