Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs']Js)

被引:209
作者
Weltmann, K-D [1 ]
Brandenburg, R. [1 ,2 ]
von Woedtke, T. [1 ]
Ehlbeck, J. [1 ]
Foest, R. [1 ]
Stieber, M. [1 ]
Kindel, E. [1 ]
机构
[1] INP Greifswald eV, D-17489 Greifswald, Germany
[2] Vanguard Med Serv Europe AG, D-10117 Berlin, Germany
关键词
D O I
10.1088/0022-3727/41/19/194008
中图分类号
O59 [应用物理学];
学科分类号
摘要
The technological potential of non-thermal plasmas for the antimicrobial treatment of heat sensitive materials is well known. Despite a multitude of scientific activities with considerable progress within the last few years, the realization of industrial plasma-based decontamination or sterilization technology remains a great challenge. This may be due to the fact that an antimicrobial treatment process needs to consider all properties of the product to be treated as well as the requirements of the complete procedure, e. g. a reprocessing cycle of medical instruments. The aim of this work is to demonstrate the applicability of plasma-based processes for the antimicrobial treatment on selected heat sensitive products. The strategy is to use modular, selective and miniaturized plasma sources, which are driven at atmospheric pressure and adaptable to the products to be treated.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets
    Baldanov, B. B.
    Semenov, A. P.
    Ranzhurov, Ts. V.
    [J]. JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (05): : 1271 - 1275
  • [32] Emission Rhythm from Atmospheric Pressure He Plasma Jets
    Fukuyama, Takao
    Yamaguchi, Takechika
    Ogawa, Haruka
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (08)
  • [33] The Second Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
    Lu, Xinpei
    Fridman, Alexander
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (03) : 701 - 702
  • [34] Vacuum ultraviolet spectroscopy of cold atmospheric pressure plasma jets
    Golda, Judith
    Biskup, Beatrix
    Layes, Vincent
    Winzer, Tristan
    Benedikt, Jan
    [J]. PLASMA PROCESSES AND POLYMERS, 2020, 17 (06)
  • [35] Atmospheric pressure plasma jets: an overview of devices and new directions
    Winter, J.
    Brandenburg, R.
    Weltmann, K-D
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (06)
  • [36] Productions of RONS with Duty Ratio in Atmospheric Pressure Plasma Jets
    Lim, Jun Sup
    Choi, Eun Ha
    [J]. PLASMA CHEMISTRY AND PLASMA PROCESSING, 2024, 44 (04) : 1595 - 1603
  • [37] Interplay of discharge and gas flow in atmospheric pressure plasma jets
    Jiang, Nan
    Yang, JingLong
    He, Feng
    Cao, Zexian
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
  • [38] Marangoni flows induced by atmospheric-pressure plasma jets
    Berendsen, C. W. J.
    van Veldhuizen, E. M.
    Kroesen, G. M. W.
    Darhuber, A. A.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (02)
  • [39] Dynamics of apokamp-type atmospheric pressure plasma jets
    Sosnin, Eduard A.
    Panarin, Victor A.
    Skakun, Victor S.
    Baksht, Evgeny Kh.
    Tarasenko, Victor F.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (02)
  • [40] Surface Modification of Polycarbonate by Atmospheric-Pressure Plasma Jets
    Mello, Carina B.
    Kostov, Konstantin G.
    Machida, Munemasa
    de Oliveira Hein, Luis Rogerio O.
    de Campos, Kamila Amato
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) : 2800 - 2805