On maximal cyclic subgroups in finite p-groups

被引:0
作者
Janko, Zvonimir [1 ]
机构
[1] Univ Heidelberg, Math Inst, D-69120 Heidelberg, Germany
关键词
finite p-groups; powerful p-groups; metacyclic p-groups;
D O I
10.1007/s00209-005-0916-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider finite noncyclic p-groups G all of whose maximal cyclic subgroups X satisfy one of the following two properties. (a) If each subgroup H of G containing X properly is nonabelian, then p = 2 and G is generalized quaternion. (b) If X is contained in exactly one maximal subgroup of G, then G is metacyclic. This solves the problems Nr.1541 and Nr. 1594 from [1].
引用
收藏
页码:29 / 31
页数:3
相关论文
共 5 条
  • [1] BERKOVICH Y, UNPUB GROUPS PRIME P, V1
  • [2] BERKOVICH Y, UNPUB GROUPS PRIME P, V3
  • [3] BERKOVICH Y, UNPUB GROUPS PRIME P, V2
  • [4] Huppert B., 1967, Endliche Gruppen I, VI
  • [5] POWERFUL P-GROUPS .1. FINITE-GROUPS
    LUBOTZKY, A
    MANN, A
    [J]. JOURNAL OF ALGEBRA, 1987, 105 (02) : 484 - 505