The ∞-eigenvalue problem

被引:191
作者
Juutinen, P [1 ]
Lindqvist, P
Manfredi, JJ
机构
[1] Univ Jyvaskyla, Dept Math, Jyvaskyla 40351, Finland
[2] Norwegian Inst Technol, Dept Math, N-7034 Trondheim, Norway
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Eigenvalue Problem;
D O I
10.1007/s002050050157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Euler-Lagrange equation of the nonlinear Rayleigh quotient (integral(Omega) /del u\\(p) dx) /(integral(Omega) /u\(p) dx) is -div (/del u\(p-2)del u) = Lambda(p)(p/)u\(p-2)u, where Lambda(p)(p) is the minimum value of the quotient. The limit as p --> infinity of these equations is found to be max {Lambda(infinity) - /del u(x)\/u(x), Delta(infinity)u(x) } = 0, where the constant Lambda(infinity) = lim(p-->infinity) Lambda p is the reciprocal of the maximum of the distance to the boundary of the domain Omega.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 9 条
[1]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[2]  
Bhattacharya T., 1989, Rend. Sem. Mat. Univ. Pol. Torino Fasc. Spec., P15
[3]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[4]   UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT [J].
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :51-74
[5]  
JUUTINEN P, 1996, THESIS U JYVASKYLA, P1
[7]  
LINDQVIST P, 1997, REV MATEMATICA U COM, V10, P1
[8]  
Lindsay B.G., 1995, NSF CBMS REGIONAL C, V5, P1, DOI 10.1214/cbms/1462106015
[9]  
Sakaguchi S., 1987, ANN SCUOLA NORM PISA, V14, P403