The ∞-eigenvalue problem

被引:185
作者
Juutinen, P [1 ]
Lindqvist, P
Manfredi, JJ
机构
[1] Univ Jyvaskyla, Dept Math, Jyvaskyla 40351, Finland
[2] Norwegian Inst Technol, Dept Math, N-7034 Trondheim, Norway
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Eigenvalue Problem;
D O I
10.1007/s002050050157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Euler-Lagrange equation of the nonlinear Rayleigh quotient (integral(Omega) /del u\\(p) dx) /(integral(Omega) /u\(p) dx) is -div (/del u\(p-2)del u) = Lambda(p)(p/)u\(p-2)u, where Lambda(p)(p) is the minimum value of the quotient. The limit as p --> infinity of these equations is found to be max {Lambda(infinity) - /del u(x)\/u(x), Delta(infinity)u(x) } = 0, where the constant Lambda(infinity) = lim(p-->infinity) Lambda p is the reciprocal of the maximum of the distance to the boundary of the domain Omega.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 9 条