Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data

被引:112
作者
Yu, Rongjie [1 ]
Abdel-Aty, Mohamed [2 ]
机构
[1] Tongji Univ, Sch Transportat Engn, Shanghai 201804, Peoples R China
[2] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32826 USA
关键词
Crash injury severity; Binary probit model; Random effects; Hierarchical probit model; Bayesian inference; MOUNTAINOUS FREEWAY;
D O I
10.1016/j.aap.2013.08.009
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
Severe crashes are causing serious social and economic loss, and because of this, reducing crash injury severity has become one of the key objectives of the high speed facilities' (freeway and expressway) management. Traditional crash injury severity analysis utilized data mainly from crash reports concerning the crash occurrence information, drivers' characteristics and roadway geometric related variables. In this study, real-time traffic and weather data were introduced to analyze the crash injury severity. The space mean speeds captured by the Automatic Vehicle Identification (AVI) system on the two roadways were used as explanatory variables in this study; and data from a mountainous freeway (1-70 in Colorado) and an urban expressway (State Road 408 in Orlando) have been used to identify the analysis result's consistence. Binary probit (BP) models were estimated to classify the non-severe (property damage only) crashes and severe (injury and fatality) crashes. Firstly, Bayesian BP models' results were compared to the results from Maximum Likelihood Estimation BP models and it was concluded that Bayesian inference was superior with more significant variables. Then different levels of hierarchical Bayesian BP models were developed with random effects accounting for the unobserved heterogeneity at segment level and crash individual level, respectively. Modeling results from both studied locations demonstrate that large variations of speed prior to the crash occurrence would increase the likelihood of severe crash occurrence. Moreover, with considering unobserved heterogeneity in the Bayesian BP models, the model goodness-of-fit has improved substantially. Finally, possible future applications of the model results and the hierarchical Bayesian probit models were discussed. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 23 条
[2]   Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections [J].
Abdelwahab, HT ;
Abdel-Aty, MA .
HIGHWAY SAFETY: MODELING, ANALYSIS, MANAGEMENT, STATISTICAL METHODS, AND CRASH LOCATION: SAFETY AND HUMAN PERFORMANCE, 2001, (1746) :6-13
[3]  
Ahmed M., 2012, P TRANSP RES BOARD W
[4]  
Ahmed M., 2011, IEEE T INTELL TRANSP, V99, P1
[5]   Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway [J].
Ahmed, Mohamed ;
Huang, Helai ;
Abdel-Aty, Mohamed ;
Guevara, Bernardo .
ACCIDENT ANALYSIS AND PREVENTION, 2011, 43 (04) :1581-1589
[6]  
[Anonymous], 2021, Bayesian data analysis
[7]   Analysis of traffic injury severity: An application of non-parametric classification tree techniques [J].
Chang, Li-Yen ;
Wang, Hsiu-Wen .
ACCIDENT ANALYSIS AND PREVENTION, 2006, 38 (05) :1019-1027
[8]   Modeling signalized intersection safety with corridor-level spatial correlations [J].
Guo, Feng ;
Wang, Xuesong ;
Abdel-Aty, Mohamed A. .
ACCIDENT ANALYSIS AND PREVENTION, 2010, 42 (01) :84-92
[9]   Examining traffic crash injury severity at unsignalized intersections [J].
Haleem, Kirolos ;
Abdel-Aty, Mohamed .
JOURNAL OF SAFETY RESEARCH, 2010, 41 (04) :347-357
[10]   Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis [J].
Helai, Huang ;
Chor, Chin Hoong ;
Haque, Md. Mazharul .
ACCIDENT ANALYSIS AND PREVENTION, 2008, 40 (01) :45-54