Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis

被引:15
|
作者
Yuan, Panhong [1 ,2 ]
Cui, Shixiu [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Lv, Xueqin [1 ]
Liu, Long [1 ,2 ]
Du, Guocheng [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bacillus subtilis; Menaquinone-4; Metabolic engineering; Menaquinone pathway; VITAMIN-K; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; MEVALONATE; PATHWAY; ISOPRENE; SYSTEM; GENE; SUPPLEMENTATION; METABOLISM;
D O I
10.1016/j.enzmictec.2020.109652
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Menaquinone-4 (MK-4), one form of vitamin K, plays an important role in cardiovascular and bone health. Menaquinone-4 (MK-4) is a valuable vitamin K2 that is difficult to synthesize organically, and now is mainly produced by microbial fermentation. Herein we significantly improved the synthesis efficiency of MK-4 by combinatorial pathway engineering in Bacillus subtilis 168, a model industrial strain widely used for production of nutraceuticals. The metabolic networks related to MK-4 synthesis include four modules, namely, MK-4 biosynthesis module, methylerythritol phosphate (MEP) module, mevalonate-dependent (MVA) isoprenoid module, and menaquinone module. Overexpression of menA, menG, and crtE genes from Synechocystis sp. PCC 6803 in MK-4 synthesis module with strong constitutive promoter P-43 resulted in 8.1 +/- 0.2 mg/L of MK-4 (No MK-4 was detected in the wild-type B. subtilis 168). MK-4 titer was further increased by 3.8-fold to 31.53 +/- 0.95 mg/L by knockout of hepT gene, which catalyzes the conversion of Farnesyl diphosphate to Heptaprenyl diphosphate. In addition, simultaneous overexpression of dxs, dxr, and ispD-ispF genes in MEP module with strong promoter P-43 increased the titer of MK-4 to 78.1 +/- 1.6 mg/L. Moreover, expression of the heterogeneous MVA module genes (mvaKl, mvaK2, mvaD, mvaS, and mvaA) resulted in 90.1 +/- 1.7 mg/L of MK-4. Finally, in order to further convert the enhanced carbon metabolism flux to MK-4, simultaneous overexpression of the genes crtE, menA, and menG in menaquinone pathway with strong promoter P43 increased the titer of MK-4 to 120.1 +/- 0.6 mg/L in shake flask and 145 +/- 2.8 mg/L in a 3-L fed-batch bioreactor. Herein the engineered B. subtilis strain may be used for the industrial production of MK-4 in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis
    Chi, Haoming
    Wen, Shun
    Wen, Tian
    Er, Liying
    Lei, Ru
    Dai, Chong
    Bian, Guangkai
    Shen, Kun
    Liu, Tiangang
    BIORESOURCE TECHNOLOGY, 2024, 411
  • [42] Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-L-threonine to pyridoxine
    Commichau, Fabian M.
    Alzinger, Ariane
    Sande, Rafael
    Bretzel, Werner
    Reuss, Daniel R.
    Dormeyer, Miriam
    Chevreux, Bastien
    Schuldes, Joerg
    Daniel, Rolf
    Akeroyd, Michiel
    Wyss, Markus
    Hohmann, Hans-Peter
    Pragai, Zoltan
    METABOLIC ENGINEERING, 2015, 29 : 196 - 207
  • [43] Menaquinone-4 concentration is correlated with sphingolipid concentrations in rat brain
    Carrié, I
    Portoukalian, J
    Vicaretti, R
    Rochford, J
    Potvin, S
    Ferland, G
    JOURNAL OF NUTRITION, 2004, 134 (01) : 167 - 172
  • [44] Pathway and protein channel engineering of Bacillus subtilis for improved production of desthiobiotin and biotin
    Wu, Yue
    Du, Guang-Qing
    Ma, Dong-Han
    Li, Jin-Long
    Fang, Huan
    Dong, Hui-Na
    Jin, Zhao-Xia
    Zhang, Da-Wei
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2025, 10 (01) : 307 - 313
  • [45] Menaquinone-4 in breast milk is derived from dietary phylloquinone
    Thijssen, HHW
    Drittij, MJ
    Vermeer, C
    Schoffelen, E
    BRITISH JOURNAL OF NUTRITION, 2002, 87 (03) : 219 - 226
  • [46] PHARMACOKINETIC CHARACTERIZATION OF MENAQUINONE-4 IN DOGS BY SENSITIVE HPLC DETERMINATION
    SANO, Y
    TADANO, K
    KIKUCHI, K
    KANEKO, K
    YUZURIHA, T
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 1993, 39 (06) : 555 - 566
  • [47] Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review
    Liu, Yang
    Zhang, Quan
    Qi, Xiaoxiao
    Gao, Huipeng
    Wang, Meng
    Guan, Hao
    Yu, Bo
    MICROORGANISMS, 2023, 11 (01)
  • [48] Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B
    Sun, Hui-Zhong
    Li, Qing
    Shang, Wei
    Qiao, Bin
    Xu, Qiu-Man
    Cheng, Jing-Sheng
    METABOLIC ENGINEERING, 2024, 83 : 123 - 136
  • [49] Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering
    Xu, Jian-Zhong
    Yan, Wei-Liu
    Zhang, Wei-Guo
    RSC ADVANCES, 2017, 7 (45): : 28527 - 28534
  • [50] Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168
    Jin, Peng
    Liang, Zhengang
    Li, Hua
    Chen, Chunxiao
    Xue, Yang
    Du, Qizhen
    CARBOHYDRATE POLYMERS, 2021, 251