Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis

被引:15
|
作者
Yuan, Panhong [1 ,2 ]
Cui, Shixiu [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Lv, Xueqin [1 ]
Liu, Long [1 ,2 ]
Du, Guocheng [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bacillus subtilis; Menaquinone-4; Metabolic engineering; Menaquinone pathway; VITAMIN-K; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; MEVALONATE; PATHWAY; ISOPRENE; SYSTEM; GENE; SUPPLEMENTATION; METABOLISM;
D O I
10.1016/j.enzmictec.2020.109652
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Menaquinone-4 (MK-4), one form of vitamin K, plays an important role in cardiovascular and bone health. Menaquinone-4 (MK-4) is a valuable vitamin K2 that is difficult to synthesize organically, and now is mainly produced by microbial fermentation. Herein we significantly improved the synthesis efficiency of MK-4 by combinatorial pathway engineering in Bacillus subtilis 168, a model industrial strain widely used for production of nutraceuticals. The metabolic networks related to MK-4 synthesis include four modules, namely, MK-4 biosynthesis module, methylerythritol phosphate (MEP) module, mevalonate-dependent (MVA) isoprenoid module, and menaquinone module. Overexpression of menA, menG, and crtE genes from Synechocystis sp. PCC 6803 in MK-4 synthesis module with strong constitutive promoter P-43 resulted in 8.1 +/- 0.2 mg/L of MK-4 (No MK-4 was detected in the wild-type B. subtilis 168). MK-4 titer was further increased by 3.8-fold to 31.53 +/- 0.95 mg/L by knockout of hepT gene, which catalyzes the conversion of Farnesyl diphosphate to Heptaprenyl diphosphate. In addition, simultaneous overexpression of dxs, dxr, and ispD-ispF genes in MEP module with strong promoter P-43 increased the titer of MK-4 to 78.1 +/- 1.6 mg/L. Moreover, expression of the heterogeneous MVA module genes (mvaKl, mvaK2, mvaD, mvaS, and mvaA) resulted in 90.1 +/- 1.7 mg/L of MK-4. Finally, in order to further convert the enhanced carbon metabolism flux to MK-4, simultaneous overexpression of the genes crtE, menA, and menG in menaquinone pathway with strong promoter P43 increased the titer of MK-4 to 120.1 +/- 0.6 mg/L in shake flask and 145 +/- 2.8 mg/L in a 3-L fed-batch bioreactor. Herein the engineered B. subtilis strain may be used for the industrial production of MK-4 in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effects of Alkali Stress on the Growth and Menaquinone-7 Metabolism of Bacillus subtilis natto
    Chen, Xiaoqian
    Shang, Chao
    Zhang, Huimin
    Sun, Cuicui
    Zhang, Guofang
    Liu, Libo
    Li, Chun
    Li, Aili
    Du, Peng
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [32] The Biosynthesis of Menaquinone-4: How a Historic Biochemical Pathway Is Changing Our Understanding of Vitamin K Nutrition
    Shearer, Martin J.
    JOURNAL OF NUTRITION, 2022, 152 (04) : 917 - 919
  • [33] De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis
    Li, Haojian
    Zhang, Guoqiang
    Deng, Aihua
    Chen, Ning
    Wen, Tingyi
    BIOTECHNOLOGY LETTERS, 2011, 33 (08) : 1575 - 1580
  • [34] Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis
    Wu, Jing
    Li, Wei
    Zhao, Shi-guang
    Qian, Sen-he
    Wang, Zhou
    Zhou, Meng-jie
    Hu, Wen-song
    Wang, Jian
    Hu, Liu-xiu
    Liu, Yan
    Xue, Zheng-lian
    MICROBIAL CELL FACTORIES, 2021, 20 (01)
  • [35] Elucidation of the mechanism producing menaquinone-4 in osteoblastic cells
    Suhara, Yoshitomo
    Wada, Akimori
    Okano, Toshio
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (04) : 1054 - 1057
  • [36] Metabolic engineering of Bacillus subtilis for terpenoid production
    Guan, Zheng
    Xue, Dan
    Abdallah, Ingy I.
    Dijkshoorn, Linda
    Setroikromo, Rita
    Lv, Guiyuan
    Quax, Wim J.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) : 9395 - 9406
  • [37] Plasma phylloquinone, menaquinone-4 and menaquinone-7 levels and coronary artery calcification
    Torii, S.
    Ikari, Y.
    Tanabe, K.
    Kakuta, T.
    Hatori, M.
    Shioi, A.
    Okano, T.
    JOURNAL OF NUTRITIONAL SCIENCE, 2016, 5
  • [38] Metabolic engineering of Bacillus subtilis for de novo synthesis of 6′-sialyllactose
    Chen, Qi
    Xu, Xianhao
    Sun, Zhengyan
    Wang, Yu
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2025, 5 (01): : 223 - 236
  • [39] Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme
    Nakagawa, Kimie
    Hirota, Yoshihisa
    Sawada, Natsumi
    Yuge, Naohito
    Watanabe, Masato
    Uchino, Yuri
    Okuda, Naoko
    Shimomura, Yuka
    Suhara, Yoshitomo
    Okano, Toshio
    NATURE, 2010, 468 (7320) : 117 - +
  • [40] Multiple Dietary Vitamin K Forms Are Converted to Tissue Menaquinone-4 in Mice
    Ellis, Jessie L.
    Fu, Xueyan
    Karl, J. Philip
    Hernandez, Christopher J.
    Mason, Joel B.
    DeBose-Boyd, Russell A.
    Booth, Sarah L.
    JOURNAL OF NUTRITION, 2022, 152 (04) : 981 - 993