Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis

被引:15
|
作者
Yuan, Panhong [1 ,2 ]
Cui, Shixiu [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Lv, Xueqin [1 ]
Liu, Long [1 ,2 ]
Du, Guocheng [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bacillus subtilis; Menaquinone-4; Metabolic engineering; Menaquinone pathway; VITAMIN-K; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; MEVALONATE; PATHWAY; ISOPRENE; SYSTEM; GENE; SUPPLEMENTATION; METABOLISM;
D O I
10.1016/j.enzmictec.2020.109652
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Menaquinone-4 (MK-4), one form of vitamin K, plays an important role in cardiovascular and bone health. Menaquinone-4 (MK-4) is a valuable vitamin K2 that is difficult to synthesize organically, and now is mainly produced by microbial fermentation. Herein we significantly improved the synthesis efficiency of MK-4 by combinatorial pathway engineering in Bacillus subtilis 168, a model industrial strain widely used for production of nutraceuticals. The metabolic networks related to MK-4 synthesis include four modules, namely, MK-4 biosynthesis module, methylerythritol phosphate (MEP) module, mevalonate-dependent (MVA) isoprenoid module, and menaquinone module. Overexpression of menA, menG, and crtE genes from Synechocystis sp. PCC 6803 in MK-4 synthesis module with strong constitutive promoter P-43 resulted in 8.1 +/- 0.2 mg/L of MK-4 (No MK-4 was detected in the wild-type B. subtilis 168). MK-4 titer was further increased by 3.8-fold to 31.53 +/- 0.95 mg/L by knockout of hepT gene, which catalyzes the conversion of Farnesyl diphosphate to Heptaprenyl diphosphate. In addition, simultaneous overexpression of dxs, dxr, and ispD-ispF genes in MEP module with strong promoter P-43 increased the titer of MK-4 to 78.1 +/- 1.6 mg/L. Moreover, expression of the heterogeneous MVA module genes (mvaKl, mvaK2, mvaD, mvaS, and mvaA) resulted in 90.1 +/- 1.7 mg/L of MK-4. Finally, in order to further convert the enhanced carbon metabolism flux to MK-4, simultaneous overexpression of the genes crtE, menA, and menG in menaquinone pathway with strong promoter P43 increased the titer of MK-4 to 120.1 +/- 0.6 mg/L in shake flask and 145 +/- 2.8 mg/L in a 3-L fed-batch bioreactor. Herein the engineered B. subtilis strain may be used for the industrial production of MK-4 in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Elucidation of the mechanism producing menaquinone-4 in osteoblastic cells
    Suhara, Yoshitomo
    Wada, Akimori
    Okano, Toshio
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (04) : 1054 - 1057
  • [32] Combinatorial engineering for efficient production of protein-glutaminase in Bacillus subtilis
    Yin, Xinxin
    Zhang, Guoqiang
    Zhou, Jingwen
    Li, Jianghua
    Du, Guocheng
    ENZYME AND MICROBIAL TECHNOLOGY, 2021, 150
  • [33] Plasma phylloquinone, menaquinone-4 and menaquinone-7 levels and coronary artery calcification
    Torii, S.
    Ikari, Y.
    Tanabe, K.
    Kakuta, T.
    Hatori, M.
    Shioi, A.
    Okano, T.
    JOURNAL OF NUTRITIONAL SCIENCE, 2016, 5
  • [34] Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation
    Yang, Shaomei
    Wang, Anlong
    Li, Jiachang
    Shao, Yunhang
    Sun, Fengjie
    Li, Shucheng
    Cao, Kai
    Liu, Hongliang
    Xiong, Peng
    Gao, Zhengquan
    MICROBIAL CELL FACTORIES, 2023, 22 (01)
  • [35] Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation
    Shaomei Yang
    Anlong Wang
    Jiachang Li
    Yunhang Shao
    Fengjie Sun
    Shucheng Li
    Kai Cao
    Hongliang Liu
    Peng Xiong
    Zhengquan Gao
    Microbial Cell Factories, 22
  • [36] PHYSIOLOGICAL EFFECTS OF MENAQUINONE DEFICIENCY IN BACILLUS-SUBTILIS
    FARRAND, SK
    TABER, HW
    JOURNAL OF BACTERIOLOGY, 1973, 115 (03) : 1035 - 1044
  • [37] Menaquinone-4 Derived from Phylloquinone Regulates Osteoblast Function
    Nakaggawa, K.
    Sawada, N.
    Suhara, Y.
    Okano, T.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2008, 23 : S251 - S251
  • [38] EFFECT OF SOLUBILIZER ON THE METABOLIC-FATE OF MENAQUINONE-4 IN RATS
    TADANO, K
    YUZURIHA, T
    IKEUCHI, T
    SATO, T
    FUJITA, T
    JOURNAL OF PHARMACOBIO-DYNAMICS, 1989, 12 (10): : 646 - 651
  • [39] PHARMACOKINETIC CHARACTERIZATION OF MENAQUINONE-4 IN DOGS BY SENSITIVE HPLC DETERMINATION
    SANO, Y
    TADANO, K
    KIKUCHI, K
    KANEKO, K
    YUZURIHA, T
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 1993, 39 (06) : 555 - 566
  • [40] Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4:: In vitro and in vivo experiments
    Sakakima, Y.
    Hayakawa, A.
    Nagasaka, T.
    Nakao, A.
    JOURNAL OF HEPATOLOGY, 2007, 47 (01) : 83 - 92