Parametric-squeezing amplification of Bose-Einstein condensates

被引:7
|
作者
Jaeger, Georg [1 ]
Berrada, Tarik [2 ]
Schmiedmayer, Joerg [2 ]
Schumm, Thorsten [2 ]
Hohenester, Ulrich [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Phys, Univ Pl 5, A-8010 Graz, Austria
[2] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
基金
奥地利科学基金会;
关键词
DOUBLE-WELL; INTERFEROMETRY; STATES; ENTANGLEMENT; OPTICS; ATOMS;
D O I
10.1103/PhysRevA.92.053632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically investigate the creation of squeezed states of a Bose-Einstein condensate (BEC) trapped in a magnetic double-well potential. The number or phase squeezed states are created by modulating the tunnel coupling between the two wells periodically with twice the Josephson frequency, i.e., through parametric amplification. Simulations are performed with the multiconfigurational time-dependent Hartree method for bosons. We employ optimal control theory to bring the condensate to a complete halt at a final time, thus creating a highly squeezed state (squeezing factor of 0.12, xi(2)(S) = -18 dB) suitable for atom interferometry.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Rotating multicomponent Bose-Einstein condensates
    Liu, Zuhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (01): : 49 - 65
  • [32] Photoexcitation of Na Bose-Einstein condensates
    Pindzola, M. S.
    Abdel-Naby, Sh A.
    Robicheaux, F.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [33] Precision interferometry with Bose-Einstein condensates
    Gaaloul, N.
    Hartwig, J.
    Schubert, C.
    Ertmer, W.
    Rasel, E. M.
    ATOM INTERFEROMETRY, 2014, 188 : 657 - 689
  • [34] Interferometry with Bose-Einstein Condensates in Microgravity
    Muentinga, H.
    Ahlers, H.
    Krutzik, M.
    Wenzlawski, A.
    Arnold, S.
    Becker, D.
    Bongs, K.
    Dittus, H.
    Duncker, H.
    Gaaloul, N.
    Gherasim, C.
    Giese, E.
    Grzeschik, C.
    Haensch, T. W.
    Hellmig, O.
    Herr, W.
    Herrmann, S.
    Kajari, E.
    Kleinert, S.
    Laemmerzahl, C.
    Lewoczko-Adamczyk, W.
    Malcolm, J.
    Meyer, N.
    Nolte, R.
    Peters, A.
    Popp, M.
    Reichel, J.
    Roura, A.
    Rudolph, J.
    Schiemangk, M.
    Schneider, M.
    Seidel, S. T.
    Sengstock, K.
    Tamma, V.
    Valenzuela, T.
    Vogel, A.
    Walser, R.
    Wendrich, T.
    Windpassinger, P.
    Zeller, W.
    van Zoest, T.
    Ertmer, W.
    Schleich, W. P.
    Rasel, E. M.
    PHYSICAL REVIEW LETTERS, 2013, 110 (09)
  • [35] Vortex stability in Bose-Einstein condensates in the presence of disorder
    Pons, Marisa
    Sanpera, Anna
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [36] Split spin-squeezed Bose-Einstein condensates
    Jing, Yumang
    Fadel, Matteo
    Ivannikov, Valentin
    Byrnes, Tim
    NEW JOURNAL OF PHYSICS, 2019, 21 (09)
  • [37] Spin-Mixing Interferometry with Bose-Einstein Condensates
    Gabbrielli, Marco
    Pezze, Luca
    Smerzi, Augusto
    PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [38] Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates
    Colciaghi, Paolo
    Li, Yifan
    Treutlein, Philipp
    Zibold, Tilman
    PHYSICAL REVIEW X, 2023, 13 (02)
  • [39] Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation
    Motazedifard, Ali
    Dalafi, A.
    Naderi, M. H.
    Roknizadeh, R.
    ANNALS OF PHYSICS, 2019, 405 : 202 - 219
  • [40] Macroscopic quantum tunneling escape of Bose-Einstein condensates
    Zhao, Xinxin
    Alcala, Diego A.
    McLain, Marie A.
    Maeda, Kenji
    Potnis, Shreyas
    Ramos, Ramon
    Steinberg, Aephraim M.
    Carr, Lincoln D.
    PHYSICAL REVIEW A, 2017, 96 (06)