Chimera States in Networks of Nonlocally Coupled Hindmarsh-Rose Neuron Models

被引:183
作者
Hizanidis, Johanne [1 ]
Kanas, Vasileios G. [2 ]
Bezerianos, Anastasios [3 ]
Bountis, Tassos [4 ,5 ]
机构
[1] Natl Ctr Sci Res Demokritos, Athens, Greece
[2] Univ Patras, Dept Elect & Comp Engn, Patras, Greece
[3] Natl Univ Singapore, Cognit Engn Lab, Singapore Inst Neuroengn SINAPSE, Singapore 117548, Singapore
[4] Univ Patras, Dept Math, GR-26110 Patras, Greece
[5] Univ Patras, Ctr Res & Applicat Nonlinear Syst, GR-26110 Patras, Greece
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 03期
关键词
Chimera states; Hindmarsh-Rose models; synchronization; bistability; 1ST-ORDER DIFFERENTIAL-EQUATIONS;
D O I
10.1142/S0218127414500308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have identified the occurrence of chimera states for various coupling schemes in networks of two-dimensional and three-dimensional Hindmarsh-Rose oscillators, which represent realistic models of neuronal ensembles. This result, together with recent studies on multiple chimera states in nonlocally coupled FitzHugh-Nagumo oscillators, provide strong evidence that the phenomenon of chimeras may indeed be relevant in neuroscience applications. Moreover, our work verifies the existence of chimera states in coupled bistable elements, whereas to date chimeras were known to arise in models possessing a single stable limit cycle. Finally, we have identified an interesting class of mixed oscillatory states, in which desynchronized neurons are uniformly interspersed among the remaining ones that are either stationary or oscillate in synchronized motion.
引用
收藏
页数:9
相关论文
共 18 条
[1]   Solvable model for chimera states of coupled oscillators [J].
Abrams, Daniel M. ;
Mirollo, Rennie ;
Strogatz, Steven H. ;
Wiley, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[2]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]  
Hagerstrom AM, 2012, NAT PHYS, V8, P658, DOI [10.1038/NPHYS2372, 10.1038/nphys2372]
[5]   A MODEL OF THE NERVE IMPULSE USING 2 1ST-ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
NATURE, 1982, 296 (5853) :162-164
[6]   A MODEL OF NEURONAL BURSTING USING 3 COUPLED 1ST ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1984, 221 (1222) :87-102
[7]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[8]  
Kuramoto Y., 2002, Nonlinear Phenomena in Complex Systems, V5, P380
[9]   Chimeras in random non-complete networks of phase oscillators [J].
Laing, Carlo R. ;
Rajendran, Karthikeyan ;
Kevrekidis, Ioannis G. .
CHAOS, 2012, 22 (01)
[10]   Chimeras in networks of planar oscillators [J].
Laing, Carlo R. .
PHYSICAL REVIEW E, 2010, 81 (06)