Mechanisms and modeling of subsurface fatigue cracking in metals

被引:44
作者
Shanyavskiy, A. A. [1 ]
机构
[1] State Ctr Civil Aviat Flight Safety, Chimkinskiy State 141426, Moscow Region, Russia
关键词
First flat facet; Fine-granular area; Mechanism; Nanostructures; Rotations; Spherical particles; Subsurface cracking; Ultra-high-cycle fatigue; Ultra-high plasticity; PROPAGATION;
D O I
10.1016/j.engfracmech.2013.05.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In terms of a synergetic system at its sequentially increased scale levels, evolution of the fracture-behavior patterns in various cyclically loaded metallic alloys is analyzed together with the alternatives of subsurface initiation of fatigue cracking. When free of the non-homogeneities like lamination sites, inclusions, etc., subsurface cracks arise due to the loss of plastic stability at the micro- or nanometer-scale level, i.e., in the local flat areas up to 500 nm in depth, normal to the load axis. Two mechanisms are controlling the formation of such a region, which is due to the instability of rotational plastic flow and fracture of the material in the state of three-dimensional compression and twisting; thereby, an even facet or a nano-structured zone forms, the latter comprising tiny particles of irregular, ellipsoid and/or spherical shapes. On further cycling, the fracture surface develops on the particle boundaries. The data of numerous investigations are shown to confirm the validity of the above-proposed models on the subsurface nanostructures in metal. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:350 / 363
页数:14
相关论文
共 50 条
  • [31] A fatigue life prediction approach to interior cracking induced high cycle and very high cycle fatigue for surface-carburized steels
    Li, Cheng
    Zhang, Yucheng
    Cai, Liang
    Hu, Tianyi
    Wang, Ping
    Li, Xiaolong
    Sun, Rui
    Li, Wei
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (03) : 865 - 881
  • [32] The role of the environment in the rolling contact fatigue cracking of rails
    Cookson, John M.
    Mutton, Peter J.
    WEAR, 2011, 271 (1-2) : 113 - 119
  • [33] Fatigue cracking at twin boundary: Effect of dislocation reactions
    Zhang, Z. J.
    Li, L. L.
    Zhang, P.
    Zhang, Z. F.
    APPLIED PHYSICS LETTERS, 2012, 101 (01)
  • [34] A unified mean stress correction model for fatigue thresholds prediction of metals
    Liu, Yong
    Paggi, Marco
    Gong, Baoming
    Deng, Caiyan
    ENGINEERING FRACTURE MECHANICS, 2020, 223
  • [35] Corrosion Fatigue-Cracking Behaviors of Low Alloy Steels in Seawater for Offshore Engineering Structures
    LIU, D. O. N. G.
    LIU, J. I. N. G.
    WU, S. H. E. N. G. C. H. U. A. N.
    HUANG, F. E. N. G.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2022, 53 (07): : 2369 - 2382
  • [36] A Heterothermic Kinetic Model of Hydrogen Absorption in Metals with Subsurface Transport
    Ono, Shunsuke
    Uchikoshi, Takeru
    Hayashi, Yusuke
    Kitagawa, Yuta
    Yeh, George
    Yamaguchi, Eiichi
    Tanabe, Katsuaki
    METALS, 2019, 9 (10)
  • [37] THE MECHANISMS INVOLVED IN ACUTE FATIGUE
    Gomez-Campos, R.
    Cossio-Bolanos, M. A.
    Brousett Minaya, M.
    Hochmuller-Fogaca, R. T.
    REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FISICA Y DEL DEPORTE, 2010, 10 (40): : 537 - 555
  • [38] Modeling mechanisms
    Glennan, Stuart
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE PART C-STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDIAL SCIENCES, 2005, 36 (02): : 443 - 464
  • [39] Observation of subsurface rolling contact fatigue cracks in silicon nitride and comparison of their location to Hertzian contact subsurface stresses
    Vieillard, Charlotte
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 96 : 283 - 292
  • [40] Principles of physical mesomechanics of nanostructural fatigue of metals. Part II. Subsurface fracture of EP741 heat-resistant alloy
    Shanyavskiy, A. A.
    Banov, M. D.
    Zakharova, T. P.
    PHYSICAL MESOMECHANICS, 2010, 13 (3-4) : 143 - 151