Splitting an expander graph

被引:18
作者
Frieze, AM [1 ]
Molloy, M
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1006/jagm.1999.1023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G = (V, E) be an r-regular expander graph. Certain algorithms for finding edge disjoint paths require that its edges be partitioned into E = E-1 boolean OR E-2 boolean OR ...boolean OR E, so that the graphs G(i) = (V, E-i) are each expanders. In this paper we give a nonconstructive proof of the existence a very good split plus an algorithm for finding a partition better than that given in A. Z. Broder, A. M. Frieze, and E. Upfal (SIAM J. Comput. 23 (1994), 976-989). (C) 1999 Academic Press.
引用
收藏
页码:166 / 172
页数:7
相关论文
共 10 条
[1]  
ALON N, 1991, RANDOM STRUCT ALGORI, V2, P366
[2]  
ALON N, 1992, PROBABILISTIC METHOD
[3]   AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1. [J].
BECK, J .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) :343-365
[4]   EXISTENCE AND CONSTRUCTION OF EDGE-DISJOINT PATHS ON EXPANDER GRAPHS [J].
BRODER, AZ ;
FRIEZE, AM ;
UPFAL, E .
SIAM JOURNAL ON COMPUTING, 1994, 23 (05) :976-989
[5]  
Knuth D. E., 1968, The Art of Computer Programming, Volume I: Fundamental Algorithms, VI
[6]  
LEIGHTON T, 1996, P WORKSH RAND PAR CO
[7]  
LEIGHTON T, P SODA 99
[8]  
LEIGHTON T, 1998, P HAW INT C SYST SCI
[9]  
Molloy M., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P524, DOI 10.1145/276698.276866
[10]  
[No title captured]