Solitary matter waves in combined linear and nonlinear potentials: Detection, stability, and dynamics

被引:5
|
作者
Holmes, Scott [1 ]
Porter, Mason A. [2 ]
Krueger, Peter [3 ]
Kevrekidis, Panayotis G. [4 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England
[2] Univ Oxford, Math Inst, Oxford Ctr Ind & Appl Math, Oxford OX1 3LB, England
[3] Univ Nottingham, Sch Phys & Astron, Midlands Ultracold Atom Res Ctr, Nottingham NG7 2RD, England
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 03期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
FESHBACH RESONANCES; SOLITONS; PROPAGATION; MOLECULES;
D O I
10.1103/PhysRevA.88.033627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study statically homogeneous Bose-Einstein condensates with spatially inhomogeneous interactions and outline an experimental realization of compensating linear and nonlinear potentials that can yield constant-density solutions. We illustrate how the presence of a step in the nonlinearity coefficient can only be revealed dynamically and examine how to reveal it by exploiting the inhomogeneity of the sound speed with a defect-dragging experiment. We conduct computational experiments and observe the spontaneous emergence of dark solitary waves. We use effective-potential theory to perform a detailed analytical investigation of the existence and stability of solitary waves in this setting, and we corroborate these results computationally using a Bogoliubov-de Gennes linear stability analysis. We find that dark solitary waves are unstable for all step widths, whereas bright solitary waves can become stable through a symmetry-breaking bifurcation as one varies the step width. Using phase-plane analysis, we illustrate the scenarios that permit this bifurcation and explore the dynamical outcomes of the interaction between the solitary wave and the step.
引用
收藏
页数:7
相关论文
共 38 条
  • [21] Stability switching at transcritical bifurcations of solitary waves in generalized nonlinear Schrodinger equations
    Yang, Jianke
    PHYSICS LETTERS A, 2013, 377 (12) : 866 - 870
  • [22] Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Saxena, Avadh
    Comech, Andrew
    Lan, Ruomeng
    PHYSICAL REVIEW LETTERS, 2016, 116 (21)
  • [23] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
    Fonkoua, S. A. T.
    Ngounou, M. S.
    Deffo, G. R.
    Pelap, F. B.
    Yamgoue, S. B.
    Fomethe, A.
    CHINESE PHYSICS B, 2020, 29 (03)
  • [24] Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach
    Kudryashov, N. A.
    Lavrova, S. F.
    OPTIK, 2022, 265
  • [25] Dynamics of chirped solitary waves: bifurcation and chaos in nonlinear chains with Morse potential
    Abbagari, Souleymanou
    Houwe, Alphonse
    Akinyemi, Lanre
    Doka, Serge Yamigno
    Thomas Bouetou, Bouetou
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [27] Localized states and their stability near a combined linear and nonlinear metasurface
    Gerasimchuk, Victor S.
    Gerasimchuk, Igor V.
    Dromov, Valentyn V.
    Donetskyi, Serhii V.
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [28] Stability of standing waves for a nonlinear Klein-Gordon equation with delta potentials
    Csobo, Elek
    Genoud, Francois
    Ohta, Masahito
    Royer, Julien
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) : 353 - 388
  • [29] Dynamics of pulse propagation with solitary waves in monomode optical fibers with nonlinear Fokas system
    Ali, Karmina K.
    Tarla, Sibel
    Yusuf, Abdullahi
    Umar, Huzaifa
    Yilmazer, Resat
    MODERN PHYSICS LETTERS B, 2025, 39 (08):
  • [30] On asymptotic stability of solitary waves in discrete Klein-Gordon equation coupled to a nonlinear oscillator
    Kopylova, E. A.
    APPLICABLE ANALYSIS, 2010, 89 (09) : 1467 - 1492