Solitary matter waves in combined linear and nonlinear potentials: Detection, stability, and dynamics

被引:5
|
作者
Holmes, Scott [1 ]
Porter, Mason A. [2 ]
Krueger, Peter [3 ]
Kevrekidis, Panayotis G. [4 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England
[2] Univ Oxford, Math Inst, Oxford Ctr Ind & Appl Math, Oxford OX1 3LB, England
[3] Univ Nottingham, Sch Phys & Astron, Midlands Ultracold Atom Res Ctr, Nottingham NG7 2RD, England
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 03期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
FESHBACH RESONANCES; SOLITONS; PROPAGATION; MOLECULES;
D O I
10.1103/PhysRevA.88.033627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study statically homogeneous Bose-Einstein condensates with spatially inhomogeneous interactions and outline an experimental realization of compensating linear and nonlinear potentials that can yield constant-density solutions. We illustrate how the presence of a step in the nonlinearity coefficient can only be revealed dynamically and examine how to reveal it by exploiting the inhomogeneity of the sound speed with a defect-dragging experiment. We conduct computational experiments and observe the spontaneous emergence of dark solitary waves. We use effective-potential theory to perform a detailed analytical investigation of the existence and stability of solitary waves in this setting, and we corroborate these results computationally using a Bogoliubov-de Gennes linear stability analysis. We find that dark solitary waves are unstable for all step widths, whereas bright solitary waves can become stable through a symmetry-breaking bifurcation as one varies the step width. Using phase-plane analysis, we illustrate the scenarios that permit this bifurcation and explore the dynamical outcomes of the interaction between the solitary wave and the step.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] EXACT SOLUTIONS FOR PERIODIC AND SOLITARY MATTER WAVES IN NONLINEAR LATTICES
    Tsang, Cheng Hou
    Malomed, Boris A.
    Chow, Kwok Wing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05): : 1299 - 1325
  • [2] Bright solitary waves on a torus: Existence, stability and dynamics for the nonlinear Schrodinger model
    D'Ambroise, J.
    Kevrekidis, P. G.
    Schmelcher, P.
    PHYSICS LETTERS A, 2020, 384 (07)
  • [3] Asymptotic Linear Stability of Solitary Water Waves
    Pego, Robert L.
    Sun, Shu-Ming
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1161 - 1216
  • [4] Integrability and Linear Stability of Nonlinear Waves
    Degasperis, Antonio
    Lombardo, Sara
    Sommacal, Matteo
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (04) : 1251 - 1291
  • [5] Stability of solitary waves in random nonlocal nonlinear media
    Maucher, F.
    Krolikowski, W.
    Skupin, S.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [6] Spectral stability and dynamics of solitary waves in a coupled nonlinear left-handed transmission line
    Mahmoud, Dahirou
    Abdoulkary, Saidou
    Mohamadou, Alidou
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03)
  • [7] Efficient numerical method for linear stability analysis of solitary waves
    Alexandrescu, Adrian
    Salgueiro, Jose R.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (12) : 2479 - 2485
  • [8] Stability of solitary waves in nonlinear Klein-Gordon equations
    Raban, Pablo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [9] Existence, stability and dynamics of solitary waves in spinor dynamical lattices
    Shi, Z.
    Susanto, H.
    Horne, R. L.
    Whitaker, N.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
  • [10] Existence and dynamics of solitary waves in a two-dimensional Noguchi nonlinear electrical network
    Deffo, Guy Roger
    Yamgoue, Serge Bruno
    Pelap, Francois Beceau
    PHYSICAL REVIEW E, 2018, 98 (06)