BIFURCATION OF LIMIT CYCLES BY PERTURBING A PERIODIC ANNULUS WITH MULTIPLE CRITICAL POINTS

被引:6
作者
Chang, Guifeng [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 08期
基金
中国国家自然科学基金;
关键词
Limit cycles; Abelian integral; bifurcation; polynomial system; GLOBAL BIFURCATION; SYSTEMS; FAMILY;
D O I
10.1142/S0218127413501435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the planar system x. = -yF(x, y)+ epsilon P (x, y), y. = xF(x, y)+ eQ(x, y), where the set {F(x, y) = 0} consists of m nonzero points (a(i), b(i)) (i = 1,..., m) with multiple multiplicities, P(x, y) and Q(x, y) are arbitrary real polynomials. We study the number of limit cycles bifurcating from the periodic annulus surrounding the origin by using Abelian integrals and residue integration.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Algebraic approximations to bifurcation curves of limit cycles for the Lienard equation [J].
Giacomini, H ;
Neukirch, S .
PHYSICS LETTERS A, 1998, 244 (1-3) :53-58
[32]   Bifurcation of Limit Cycles and the Cusp of Order n [J].
Han Maoan (Department of Applied Mathematics .
Acta Mathematica Sinica,English Series, 1997, (01) :64-75
[33]   ON BIFURCATION OF LIMIT-CYCLES FROM CENTERS [J].
CHICONE, C .
LECTURE NOTES IN MATHEMATICS, 1990, 1455 :20-43
[34]   A computation of bifurcation parameter values for limit cycles [J].
Ueta, T ;
Tsueike, M ;
Kawakami, H ;
Yoshinaga, T ;
Katsuta, Y .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (09) :1725-1728
[35]   Hopf bifurcation and multiple limit cycles in bio-chemical reaction of the morphogenesis process [J].
Wang, Siyuan ;
Huang, Xuncheng ;
Zhu, Lemin ;
Villasana, Minaya .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) :739-749
[36]   Hopf bifurcation and multiple limit cycles in bio-chemical reaction of the morphogenesis process [J].
Siyuan Wang ;
Xuncheng Huang ;
Lemin Zhu ;
Minaya Villasana .
Journal of Mathematical Chemistry, 2010, 47 :739-749
[37]   The Number of Limit Cycles for a Class of Cubic Systems with Multiple Parameters [J].
Cai, Meilan ;
Han, Maoan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (05)
[38]   Limit cycles near a homoclinic loop by perturbing a class of integrable systems [J].
Xiong, Yanqin ;
Han, Maoan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) :814-832
[39]   Limit Cycles and Integrability in a Class of Systems with High-Order Nilpotent Critical Points [J].
Li, Feng ;
Qiu, Jianlong .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[40]   Limit cycles for cubic systems with a symmetry of order 4 and without infinite critical points [J].
Alvarez, M. J. ;
Gasull, A. ;
Prohens, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (03) :1035-1043