BIFURCATION OF LIMIT CYCLES BY PERTURBING A PERIODIC ANNULUS WITH MULTIPLE CRITICAL POINTS

被引:6
作者
Chang, Guifeng [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 08期
基金
中国国家自然科学基金;
关键词
Limit cycles; Abelian integral; bifurcation; polynomial system; GLOBAL BIFURCATION; SYSTEMS; FAMILY;
D O I
10.1142/S0218127413501435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the planar system x. = -yF(x, y)+ epsilon P (x, y), y. = xF(x, y)+ eQ(x, y), where the set {F(x, y) = 0} consists of m nonzero points (a(i), b(i)) (i = 1,..., m) with multiple multiplicities, P(x, y) and Q(x, y) are arbitrary real polynomials. We study the number of limit cycles bifurcating from the periodic annulus surrounding the origin by using Abelian integrals and residue integration.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces [J].
Garcia, Isaac A. ;
Hernandez-Bermejo, Benito .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) :1665-1669
[22]   Bifurcation of limit cycles from two families of centers [J].
Coll, B ;
Gasull, A ;
Prohens, R .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (02) :275-287
[23]   Bifurcation of limit cycles from a heteroclinic loop with a cusp [J].
Sun, Xianbo ;
Han, Maoan ;
Yang, Junmin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (09) :2948-2965
[24]   Bifurcation of limit cycles near equivariant compound cycles [J].
Maoan HAN Tonghua ZHANG Hong ZANG Department of Mathematics Shanghai Normal University Shanghai China .
Science in China(Series A:Mathematics), 2007, (04) :503-514
[25]   Bifurcation of limit cycles near equivariant compound cycles [J].
Mao-an Han ;
Tong-hua Zhang ;
Hong Zang .
Science in China Series A: Mathematics, 2007, 50 :503-514
[26]   Bifurcation of limit cycles near equivariant compound cycles [J].
Han, Mao-an ;
Zhang, Tong-hua ;
Zang, Hong .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04) :503-514
[27]   Bifurcation of limit cycles and the cusp of ordern [J].
Han Maoan .
Acta Mathematica Sinica, 1997, 13 (1) :64-75
[28]   Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system [J].
Chen, HB ;
Liu, YR ;
Zeng, XW .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02) :127-138
[29]   On the Number of Limit Cycles by Perturbing a Piecewise Smooth Lienard Model [J].
Sheng, Lijuan ;
Han, Maoan ;
Romanovsky, Valery .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10)
[30]   BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES [J].
Sheng, Lijuan ;
Han, Maoan .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06) :2482-2495