BIFURCATION OF LIMIT CYCLES BY PERTURBING A PERIODIC ANNULUS WITH MULTIPLE CRITICAL POINTS

被引:6
作者
Chang, Guifeng [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 08期
基金
中国国家自然科学基金;
关键词
Limit cycles; Abelian integral; bifurcation; polynomial system; GLOBAL BIFURCATION; SYSTEMS; FAMILY;
D O I
10.1142/S0218127413501435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the planar system x. = -yF(x, y)+ epsilon P (x, y), y. = xF(x, y)+ eQ(x, y), where the set {F(x, y) = 0} consists of m nonzero points (a(i), b(i)) (i = 1,..., m) with multiple multiplicities, P(x, y) and Q(x, y) are arbitrary real polynomials. We study the number of limit cycles bifurcating from the periodic annulus surrounding the origin by using Abelian integrals and residue integration.
引用
收藏
页数:14
相关论文
共 10 条
[1]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[2]  
Churchill R.V., 1976, Complex Variables and Applications, V3rd
[3]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[4]   Bifurcation of Limit Cycles from a Polynomial Non-global Center [J].
Gasull, A. ;
Prohens, R. ;
Torregrosa, J. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :945-960
[5]   Limit cycles appearing from the perturbation of a system with a multiple line of critical points [J].
Gasull, Armengol ;
Li, Chengzhi ;
Torregrosa, Joan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :278-285
[6]   Limit cycles of cubic polynomial vector fields via the averaging theory [J].
Gine, Jaume ;
Llibre, Jaume .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (08) :1707-1721
[7]   WEAK FOCUS, LIMIT-CYCLES, AND BIFURCATIONS FOR BOUNDED QUADRATIC SYSTEMS [J].
LI, CZ ;
LLIBRE, J ;
ZHANG, ZF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :193-223
[8]   Averaging analysis of a perturbated quadratic center [J].
Llibre, J ;
del Río, JSP ;
Rodríguez, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :45-51
[9]   Global bifurcation of limit cycles in a family of multiparameter system [J].
Xiang, GH ;
Han, MA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (09) :3325-3335
[10]   Global bifurcation of limit cycles in a family of polynomial systems [J].
Xiang, GH ;
Han, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (02) :633-644