BIFURCATION OF LIMIT CYCLES BY PERTURBING A PERIODIC ANNULUS WITH MULTIPLE CRITICAL POINTS

被引:6
|
作者
Chang, Guifeng [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 08期
基金
中国国家自然科学基金;
关键词
Limit cycles; Abelian integral; bifurcation; polynomial system; GLOBAL BIFURCATION; SYSTEMS; FAMILY;
D O I
10.1142/S0218127413501435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the planar system x. = -yF(x, y)+ epsilon P (x, y), y. = xF(x, y)+ eQ(x, y), where the set {F(x, y) = 0} consists of m nonzero points (a(i), b(i)) (i = 1,..., m) with multiple multiplicities, P(x, y) and Q(x, y) are arbitrary real polynomials. We study the number of limit cycles bifurcating from the periodic annulus surrounding the origin by using Abelian integrals and residue integration.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hopf bifurcation of limit cycles by perturbing piecewise integrable systems
    Han, Maoan
    Lu, Wen
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 161
  • [2] Limit cycles appearing from the perturbation of a system with a multiple line of critical points
    Gasull, Armengol
    Li, Chengzhi
    Torregrosa, Joan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 278 - 285
  • [3] BIFURCATION OF LIMIT CYCLES BY PERTURBING PIECEWISE HAMILTONIAN SYSTEMS
    Liu, Xia
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1379 - 1390
  • [4] Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System
    Jiangbin Chen
    Maoan Han
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [5] Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System
    Chen, Jiangbin
    Han, Maoan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (02)
  • [6] Simultaneous Bifurcation of Limit Cycles and Critical Periods
    Oliveira, Regilene D. S.
    Sanchez-Sanchez, Ivan
    Torregrosa, Joan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
  • [7] The number of limit cycles in perturbations of polynomial systems with multiple circles of critical points
    Xiong, Yanqin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (01) : 220 - 239
  • [8] Simultaneous bifurcation of limit cycles from a linear center with extra singular points
    Perez-Gonzalez, S.
    Torregrosa, J.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (01): : 124 - 138
  • [9] BIFURCATION OF LIMIT CYCLES FROM QUARTIC ISOCHRONOUS SYSTEMS
    Peng, Linping
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [10] Bifurcation of Limit Cycles by Perturbing Piecewise Linear Hamiltonian Systems with Piecewise Polynomials
    Chen, Jiangbin
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (05):