The Brownian loop soup

被引:149
作者
Lawler, GF
Werner, W
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
关键词
Brownian loops; conformal invariance;
D O I
10.1007/s00440-003-0319-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to "chronologically add Brownian loops" to simple curves in the plane.
引用
收藏
页码:565 / 588
页数:24
相关论文
共 13 条
[1]  
BELAVIN A, 1980, NUCL PHYS B, V241, P333
[2]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[3]   CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1984, 240 (04) :514-532
[4]  
DUBEDAT J, 2003, MATHPR0303128
[5]   Conformal restriction, highest-weight representations and SLE [J].
Friedrich, R ;
Werner, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) :105-122
[6]   Conformal fields, restriction properties, degenerate representations and SLE [J].
Friedrich, R ;
Werner, W .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (11) :947-952
[7]   Conformal restriction: The chordal [J].
Lawler, G ;
Schramm, O ;
Werner, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :917-955
[8]  
LAWLER GF, 2000, J EUR MATH SOC, V2, P291
[9]  
LAWLER GF, 2002, IN PRESS AMS P S PUR
[10]  
LAWLER GF, 2001, IN PRESS ANN PROBAB